SHORTENED AND PUNCTURED CODES AND THEIR HULLS*

Stefka H. Bouyuklieva

Abstract

The hull of a linear code is the intersection of the code with its orthogonal complement. We study the relation between the hulls of a linear code, its shortened codes and its punctured codes.

KEYWORDS: shortened code, punctured code, hull of a linear code.
2020 Math. Subject Classification: 94B05

1 Introduction

Let \mathbb{F}_{q} be a finite field with q elements and \mathbb{F}_{q}^{n} be the n-dimensional vector space over \mathbb{F}_{q}. Any k-dimensional subspace of \mathbb{F}_{q}^{n} is called a linear q-ary code of length n and dimension k. The vectors in a linear code are called codewords. The (Hamming) weight $\mathrm{wt}(x)$ of a vector $x \in \mathbb{F}_{q}^{n}$ is the number of its nonzero coordinates. The minimum weight of a linear code C is the minimum nonzero weight of a codeword in C. If C is a linear code of length n, dimension k and minimum weight d, we say that C is an $[n, k, d]$ code. A matrix which rows form a basis of C is called a generator matrix of this code.

Let $(u, v): \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ be an inner product in the linear space \mathbb{F}_{q}^{n}. The dual code of C is $C^{\perp}=\left\{u \in \mathbb{F}_{q}^{n}:(u, v)=0\right.$ for all $\left.v \in C\right\}$. Obviously, C^{\perp} is a linear $[n, n-k]$ code. The dual distance of C is equal to the minimum weight of its dual code and denoted by d^{\perp}. If $C \subset C^{\perp}$, the code is called self-orthogonal, and if $C=C^{\perp}$, the code is self-dual. The intersection $C \cap C^{\perp}$ is called the hull of the code and denoted by $\mathscr{H}(C)$. The dimension $h(C)$ of the hull can be at least 0 and at most k,

[^0]as $h(C)=k$ if and only if the code is self-orthogonal. If $h(C)=0$, the code is called linear complementary dual (or just LCD) code. So C is an LCD code if $C \cap C^{\perp}=\{0\}$.

This note is organized as follows. In Section 2 we introduce the shortened and punctured codes of a linear code C. In Section 3, we present some theoretical results about the hulls of a linear code and its shortened and punctured codes.

2 Punctured and shortened codes

Let C be a linear $[n, k, d]$ code over the finite field \mathbb{F}_{q} and T be a set of t coordinate positions. We can puncture C by deleting the coordinates from T in each codeword. The resulting code C^{T} is still linear but its length is $n-t$. If $t=1$ and $d>1$ the the dimension of C^{T} is k, and its minimum weight is d or $d-1$. If $C(T)$ is the subcode of C consisting of all codewords that have 0 's on the set T, puncturing $C(T)$ on T gives the shortened code C_{T} of C. We need the following result on the punctured and shortened codes of C that is a modification of [2, Theorem 1.5.7].

Theorem 1. Let C be an $[n, k, d]$ code and T be a set of t coordinates. Then:
(i) $\left(C^{\perp}\right)_{T}=\left(C^{T}\right)^{\perp}$ and $\left(C^{\perp}\right)^{T}=\left(C_{T}\right)^{\perp}$;
(ii) if $t<d$, then C^{T} and $\left(C^{\perp}\right)_{T}$ have dimensions k and $n-t-k$, respectively.

We focus on the case when $T=\{i\}, 1 \leq i \leq n$, i.e. puncturing and shortening of a code on one coordinate. Then we denote the punctured code by C^{i} and the shortened code by C_{i}. If all codewords in C have 0 's in this coordinate, then the punctured and the shortened codes C_{i} and C^{i} coincide. In such a case the dual distance of C is 1 .

Let $d^{\perp}(C)>1$ and G be a generator matrix of C, where

$$
G=\left(\begin{array}{c|c}
1 & v \tag{1}\\
\hline 0 & \\
\vdots & G_{1} \\
0 &
\end{array}\right)
$$

Then G_{1} is a generator matrix of the shortened code C_{1}, and the matrix $G^{1}=\binom{v}{G_{1}}$ generates the punctured code C^{1}.

Let C be a self-orthogonal code over \mathbb{F}_{q}. Obviously, its shortened code on any coordinate set T is also self-orthogonal. However, this is not always true for its punctured codes. It is easy to see that the punctured code C^{i} is also self-orthogonal if and only if the i-th coordinate in each codeword of C is equal to 0 .

3 The hulls

Note that $\mathscr{H}(C)=\mathscr{H}\left(C^{\perp}\right)$ for any linear code over a finite field.
Theorem 2. Let C be an $[n, k, 1]$ code and $(10 \ldots 0) \in C$. Then $\mathscr{H}(C)=\left(0 \mid \mathscr{H}\left(C_{1}\right)\right)$ and $h(C)=h\left(C_{1}\right)$.

Proof. We have $C=\left(0 \mid C_{1}\right) \cup\left(1 \mid C_{1}\right)$ and $C^{\perp}=\left(0 \mid C_{1}^{\perp}\right)$. Now C_{1} is a linear $\left[n-1, k-1, d_{1}\right]$ code and C_{1}^{\perp} has parameters $\left[n-1, n-k, d^{\perp}\right]$. If $v \in \mathscr{H}(C)$ then $v=\left(0, v_{1}\right)$, where $v_{1} \in C_{1} \cap C_{1}^{\perp}=\mathscr{H}\left(C_{1}\right)$. This proves that $h(C)=h\left(C_{1}\right)$.

Theorem 3. If C is a linear q-ary $[n, k, d \geq 2]$ code with dual distance $d^{\perp} \geq 2$ then $h\left(C_{1}\right)=h(C)+\varepsilon$, where $\varepsilon= \pm 1$ or 0 .

Proof. Since $d^{\perp}>1$, the code C has no zero coordinate. Hence there is a codeword $(1, x) \in C$, and C can be considered as a union of cosets

$$
C=\bigcup_{a \in \mathbb{F}_{q}}\left(a \mid a x+C_{1}\right) .
$$

Let $\mathscr{H}=C \cap C^{\perp}$ and $\mathscr{H}_{1}=C_{1} \cap C_{1}^{\perp}$. There are two possibilities for \mathscr{H}, namely $\mathscr{H}=\left(0 \mid \mathscr{H}^{\prime}\right)$ or $\mathscr{H}=\cup_{a \in \mathbb{F}_{q}}\left(a \mid a v+\mathscr{H}^{\prime}\right)$ if $(1, v) \in \mathscr{H}$. In both
cases $\mathscr{H}^{\prime} \subseteq \mathscr{H}_{1}$. If $\mathscr{H}^{\prime}=\mathscr{H}_{1}$ then $\operatorname{dim} \mathscr{H}_{1}=\operatorname{dim} \mathscr{H}$ or $\operatorname{dim} \mathscr{H}-1$.
Let now $\mathscr{H}^{\prime} \not \equiv \mathscr{H}_{1}$. Take $y_{1}, y_{2} \in \mathscr{H}_{1} \backslash \mathscr{H}^{\prime}$. Then $\left(0, y_{i}\right) \in C$ and $\left(a_{i}, y_{i}\right) \in C^{\perp}, a_{i} \in \mathbb{F}_{q}^{*}, i=1,2$. Hence $\left(0, y_{1}-a_{1} a_{2}^{-1} y_{2}\right) \in \mathscr{H}$ and so $y_{1}-a_{1} a_{2}^{-1} y_{2} \in \mathscr{H}^{\prime}$. Hence $y_{1} \in a_{1} a_{2}^{-1} y_{2}+\mathscr{H}^{\prime}$. This shows that $\mathscr{H}_{1}=$ $\cup_{a \in \mathbb{F}_{q}}\left(a \mid a y_{2}+\mathscr{H}^{\prime}\right)$ and $\operatorname{dim} \mathscr{H}_{1}=\operatorname{dim} \mathscr{H}^{\prime}+1$. Since $\operatorname{dim} \mathscr{H}^{\prime}=\operatorname{dim} \mathscr{H}$ or $\operatorname{dim} \mathscr{H}-1$, we have $\operatorname{dim} \mathscr{H}_{1}=\operatorname{dim} \mathscr{H}$ or $\operatorname{dim} \mathscr{H}+1$.

Theorem 3 is proved in [1] only for the binary case.
Corollary 1. If C is a linear q-ary $[n, k, d \geq 2]$ code with dual distance $d^{\perp} \geq 2$ then $h\left(C^{1}\right)=h(C)+\varepsilon$, where $\varepsilon= \pm 1$ or 0 .

Proof. According to Theorem 1, we have $C^{1}=\left(C^{\perp}\right)_{1}$. From Theorem 3,

$$
\operatorname{dim} \mathscr{H}\left(\left(C^{\perp}\right)_{1}\right)=\operatorname{dim} \mathscr{H}\left(C^{\perp}\right)+\varepsilon=\operatorname{dim} \mathscr{H}+\varepsilon=h(C)+\varepsilon .
$$

Let us see what happens when the minimum weight of the code C is $d(C)=2$. Without loss of generality we can take $(110 \ldots 0) \in C$. We consider two cases for codes with minimum weight 2 .

Theorem 4. Let C be an $[n, k, 2]$ q-ary code such that $(110 \ldots 0) \in$ C and $(1,-1,0 \ldots 0) \in C^{\perp}$, and $T=\{1,2\}$. Then

$$
\mathscr{H}(C)= \begin{cases}\left(00 \mid \mathscr{H}\left(C_{T}\right)\right) \cup\left(11 \mid \mathscr{H}\left(C_{T}\right)\right), & \text { if } \operatorname{char}\left(\mathbb{F}_{q}\right)=2 \\ \left(00 \mid \mathscr{H}\left(C_{T}\right)\right), & \text { if } \operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3\end{cases}
$$

Proof. In this case $C=\bigcup_{a \in \mathbb{F}_{q}}\left(a a \mid C_{0}\right)$ and $C^{\perp}=\bigcup_{a \in \mathbb{F}_{q}}\left(a,-a \mid C_{0}^{\prime}\right)$. We consider two cases:

1. Let the characteristic of the field be equal to 2 . This means that $q=2^{s}$ for an integer $s \geq 1$. Then $-1=1$ and $(110 \ldots 0) \in \mathscr{H}(C)$. If $v_{1} \in \mathscr{H}\left(C_{T}\right)$ then $v=\left(00, v_{1}\right) \in \mathscr{H}(C)$ and $\left(11 \mid v_{1}\right) \in \mathscr{H}(C)$. Hence $\mathscr{H}(C)=\bigcup_{a \in \mathbb{F}_{q}}\left(a a \mid \mathscr{H}\left(C_{T}\right)\right)$ and $h(C)=h\left(C_{T}\right)+1$.
2. Let $\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3$. If $v_{1} \in \mathscr{H}\left(C_{T}\right)$ then $v=\left(00, v_{1}\right) \in C$, but $\left(b,-b, v_{1}\right) \in C^{\perp}$ for some $b \in \mathbb{F}_{q}$. But then

$$
\left(b,-b, v_{1}\right)-b(1,-1,0 \ldots, 0)=\left(0,0, v_{1}\right) \in C^{\perp}
$$

and therefore $\left(00 \mid v_{1}\right) \in \mathscr{H}(C)$.
If $\left(11, v_{1}\right) \in \mathscr{H}(C)$ for some $v_{1} \in C_{T}$ then $\left(11, v_{1}\right) \in C^{\perp}$ and so

$$
\left(1,1, v_{1}\right)+(1,-1,0 \ldots, 0)=\left(2,0, v_{1}\right) \in C^{\perp}
$$

which is impossible, since the obtained vector is not orthogonal to $(110 \ldots 0) \in C$. Hence $\mathscr{H}(C)=\left(00 \mid \mathscr{H}\left(C_{T}\right)\right)$ and $h(C)=h\left(C_{T}\right)$.

Theorem 5. Let C be an $[n, k, 2]$ binary code with $d^{\perp} \geq 3, T=$ $\{1,2\}$ and $(110 \ldots 0) \in C$. Then $h(C)=h\left(C_{T}\right)$.

Proof. If $v=\left(a a, v_{1}\right) \in \mathscr{H}(C)$ for some $a \in \mathbb{F}_{q}$ then $\left(00, v_{1}\right) \in$ C, so $v_{1} \in C_{T}$. On the other hand, $\left(a a, v_{1}\right) \in C^{\perp}$ and therefore $v_{1} \in$ C_{T}^{\perp}. Hence $v_{1} \in \mathscr{H}\left(C_{T}\right)$. This shows that $h(C) \leq h\left(C_{T}\right)$. According to Theorem 3, we have $h\left(C_{T}\right)=h(C)$ or $h\left(C_{T}\right)=h(C)+1$. Note that both cases are possible.

We conclude this note with a corollary for LCD codes with minimum weight 2.

Corollary 2. Let C be a linear $[n, k, 2]$ code over $\mathbb{F}_{q}, q=p^{s}$ for a prime $p, T=\{1,2\}$ and $(110 \ldots 0) \in C$. If $p \geq 3$, the code C is $L C D$ if and only if C_{T} is $L C D$ code. If $p=2$ and $(110 \ldots 0) \notin C^{\perp}$, the code C is $L C D$ if and only if C_{T} is $L C D$ code. If $p=2$ and $(110 \ldots 0) \in C^{\perp}$, then C is not an LCD code.

REFERENCES:

[1] Bouyuklieva S., Optimal binary LCD codes, Des. Codes Cryptogr. 89, (2021), 2445-2461. https://doi.org/10.1007/s10623-021-00929-w
[2] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.

Stefka Bouyuklieva

Faculty of Mathematics and Informatics
St. Cyril and St. Methodius University of Veliko Tarnovo
Veliko Tarnovo, Bulgaria
e-mail: stefka@ts.uni-vt.bg

[^0]: *This paper is (partially) supported by Scientific Research Grant RD-0832/17.01.2023 of Shumen University

