SHORTENED AND PUNCTURED CODES AND THEIR HULLS*

STEFKA H. BOUYUKLIEVA

ABSTRACT: The hull of a linear code is the intersection of the code with its orthogonal complement. We study the relation between the hulls of a linear code, its shortened codes and its punctured codes.

KEYWORDS: shortened code, punctured code, hull of a linear code.

2020 Math. Subject Classification: 94B05

1 Introduction

Let \mathbb{F}_q be a finite field with q elements and \mathbb{F}_q^n be the *n*-dimensional vector space over \mathbb{F}_q . Any *k*-dimensional subspace of \mathbb{F}_q^n is called a linear q-ary code of length n and dimension k. The vectors in a linear code are called codewords. The (Hamming) weight wt(x) of a vector $x \in \mathbb{F}_q^n$ is the number of its nonzero coordinates. The minimum weight of a linear code C is the minimum nonzero weight of a codeword in C. If C is a linear code of length n, dimension k and minimum weight d, we say that C is an [n, k, d] code. A matrix which rows form a basis of C is called a generator matrix of this code.

Let $(u, v) : \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ be an inner product in the linear space \mathbb{F}_q^n . The dual code of *C* is $C^{\perp} = \{u \in \mathbb{F}_q^n : (u, v) = 0 \text{ for all } v \in C\}$. Obviously, C^{\perp} is a linear [n, n-k] code. The dual distance of *C* is equal to the minimum weight of its dual code and denoted by d^{\perp} . If $C \subset C^{\perp}$, the code is called self-orthogonal, and if $C = C^{\perp}$, the code is self-dual. The intersection $C \cap C^{\perp}$ is called the hull of the code and denoted by $\mathscr{H}(C)$. The dimension h(C) of the hull can be at least 0 and at most *k*,

^{*}This paper is (partially) supported by Scientific Research Grant RD-08-32/17.01.2023 of Shumen University

as h(C) = k if and only if the code is self-orthogonal. If h(C) = 0, the code is called linear complementary dual (or just LCD) code. So *C* is an LCD code if $C \cap C^{\perp} = \{0\}$.

This note is organized as follows. In Section 2 we introduce the shortened and punctured codes of a linear code C. In Section 3, we present some theoretical results about the hulls of a linear code and its shortened and punctured codes.

2 Punctured and shortened codes

Let *C* be a linear [n,k,d] code over the finite field \mathbb{F}_q and *T* be a set of *t* coordinate positions. We can puncture *C* by deleting the coordinates from *T* in each codeword. The resulting code C^T is still linear but its length is n-t. If t = 1 and d > 1 the the dimension of C^T is *k*, and its minimum weight is *d* or d-1. If C(T) is the subcode of *C* consisting of all codewords that have 0's on the set *T*, puncturing C(T) on *T* gives the shortened code C_T of *C*. We need the following result on the punctured and shortened codes of *C* that is a modification of [2, Theorem 1.5.7].

Theorem 1. Let C be an [n,k,d] code and T be a set of t coordinates. Then:

- (i) $(C^{\perp})_T = (C^T)^{\perp}$ and $(C^{\perp})^T = (C_T)^{\perp}$;
- (ii) if t < d, then C^T and $(C^{\perp})_T$ have dimensions k and n t k, respectively.

We focus on the case when $T = \{i\}, 1 \le i \le n$, i.e. puncturing and shortening of a code on one coordinate. Then we denote the punctured code by C^i and the shortened code by C_i . If all codewords in *C* have 0's in this coordinate, then the punctured and the shortened codes C_i and C^i coincide. In such a case the dual distance of *C* is 1. Let $d^{\perp}(C) > 1$ and *G* be a generator matrix of *C*, where

(1)
$$G = \begin{pmatrix} 1 & v \\ 0 \\ \vdots & G_1 \\ 0 & \end{pmatrix}.$$

Then G_1 is a generator matrix of the shortened code C_1 , and the matrix $G^1 = \begin{pmatrix} v \\ G_1 \end{pmatrix}$ generates the punctured code C^1 .

Let *C* be a self-orthogonal code over \mathbb{F}_q . Obviously, its shortened code on any coordinate set *T* is also self-orthogonal. However, this is not always true for its punctured codes. It is easy to see that the punctured code C^i is also self-orthogonal if and only if the *i*-th coordinate in each codeword of *C* is equal to 0.

3 The hulls

Note that $\mathscr{H}(C) = \mathscr{H}(C^{\perp})$ for any linear code over a finite field. <u>Theorem 2</u>. Let *C* be an [n,k,1] code and $(10...0) \in C$. Then $\mathscr{H}(C) = (0|\mathscr{H}(C_1))$ and $h(C) = h(C_1)$.

Proof. We have $C = (0|C_1) \cup (1|C_1)$ and $C^{\perp} = (0|C_1^{\perp})$. Now C_1 is a linear $[n-1,k-1,d_1]$ code and C_1^{\perp} has parameters $[n-1,n-k,d^{\perp}]$. If $v \in \mathscr{H}(C)$ then $v = (0,v_1)$, where $v_1 \in C_1 \cap C_1^{\perp} = \mathscr{H}(C_1)$. This proves that $h(C) = h(C_1)$.

<u>Theorem 3</u>. If C is a linear q-ary $[n,k,d \ge 2]$ code with dual distance $d^{\perp} \ge 2$ then $h(C_1) = h(C) + \varepsilon$, where $\varepsilon = \pm 1$ or 0.

Proof. Since $d^{\perp} > 1$, the code *C* has no zero coordinate. Hence there is a codeword $(1, x) \in C$, and *C* can be considered as a union of cosets

$$C = \bigcup_{a \in \mathbb{F}_q} (a|ax + C_1).$$

Let $\mathscr{H} = C \cap C^{\perp}$ and $\mathscr{H}_1 = C_1 \cap C_1^{\perp}$. There are two possibilities for \mathscr{H} , namely $\mathscr{H} = (0|\mathscr{H}')$ or $\mathscr{H} = \bigcup_{a \in \mathbb{F}_q} (a|av + \mathscr{H}')$ if $(1, v) \in \mathscr{H}$. In both

cases $\mathscr{H}' \subseteq \mathscr{H}_1$. If $\mathscr{H}' = \mathscr{H}_1$ then dim $\mathscr{H}_1 = \dim \mathscr{H}$ or dim $\mathscr{H} - 1$. Let now $\mathscr{H}' \not\equiv \mathscr{H}_1$. Take $y_1, y_2 \in \mathscr{H}_1 \setminus \mathscr{H}'$. Then $(0, y_i) \in C$ and $(a_i, y_i) \in C^{\perp}$, $a_i \in \mathbb{F}_q^*$, i = 1, 2. Hence $(0, y_1 - a_1 a_2^{-1} y_2) \in \mathscr{H}$ and so $y_1 - a_1 a_2^{-1} y_2 \in \mathscr{H}'$. Hence $y_1 \in a_1 a_2^{-1} y_2 + \mathscr{H}'$. This shows that $\mathscr{H}_1 = \bigcup_{a \in \mathbb{F}_q} (a | a y_2 + \mathscr{H}')$ and dim $\mathscr{H}_1 = \dim \mathscr{H}' + 1$. Since dim $\mathscr{H}' = \dim \mathscr{H}$ or dim $\mathscr{H} - 1$, we have dim $\mathscr{H}_1 = \dim \mathscr{H}$ or dim $\mathscr{H} + 1$.

Theorem 3 is proved in [1] only for the binary case.

Corollary 1. If C is a linear q-ary $[n,k,d \ge 2]$ code with dual distance $d^{\perp} \ge 2$ then $h(C^1) = h(C) + \varepsilon$, where $\varepsilon = \pm 1$ or 0.

Proof. According to Theorem 1, we have $C^1 = (C^{\perp})_1$. From Theorem 3,

$$\dim \mathscr{H}((C^{\perp})_1) = \dim \mathscr{H}(C^{\perp}) + \varepsilon = \dim \mathscr{H} + \varepsilon = h(C) + \varepsilon$$

Let us see what happens when the minimum weight of the code *C* is d(C) = 2. Without loss of generality we can take $(110...0) \in C$. We consider two cases for codes with minimum weight 2.

<u>Theorem 4</u>. Let C be an [n,k,2] q-ary code such that $(110...0) \in C$ and $(1,-1,0...0) \in C^{\perp}$, and $T = \{1,2\}$. Then

$$\mathscr{H}(C) = \begin{cases} (00|\mathscr{H}(C_T)) \cup (11|\mathscr{H}(C_T)), & \text{if } \operatorname{char}(\mathbb{F}_q) = 2\\ (00|\mathscr{H}(C_T)), & \text{if } \operatorname{char}(\mathbb{F}_q) \ge 3 \end{cases}$$

Proof. In this case $C = \bigcup_{a \in \mathbb{F}_q} (aa|C_0)$ and $C^{\perp} = \bigcup_{a \in \mathbb{F}_q} (a, -a|C'_0)$. We consider two cases:

- 1. Let the characteristic of the field be equal to 2. This means that $q = 2^s$ for an integer $s \ge 1$. Then -1 = 1 and $(110...0) \in \mathscr{H}(C)$. If $v_1 \in \mathscr{H}(C_T)$ then $v = (00, v_1) \in \mathscr{H}(C)$ and $(11|v_1) \in \mathscr{H}(C)$. Hence $\mathscr{H}(C) = \bigcup_{a \in \mathbb{F}_a} (aa|\mathscr{H}(C_T))$ and $h(C) = h(C_T) + 1$.
- 2. Let char(\mathbb{F}_q) \geq 3. If $v_1 \in \mathscr{H}(C_T)$ then $v = (00, v_1) \in C$, but $(b, -b, v_1) \in C^{\perp}$ for some $b \in \mathbb{F}_q$. But then

$$(b, -b, v_1) - b(1, -1, 0..., 0) = (0, 0, v_1) \in C^{\perp}$$

and therefore $(00|v_1) \in \mathscr{H}(C)$.

If $(11, v_1) \in \mathscr{H}(C)$ for some $v_1 \in C_T$ then $(11, v_1) \in C^{\perp}$ and so

 $(1,1,v_1) + (1,-1,0\ldots,0) = (2,0,v_1) \in C^{\perp},$

which is impossible, since the obtained vector is not orthogonal to $(110...0) \in C$. Hence $\mathscr{H}(C) = (00|\mathscr{H}(C_T))$ and $h(C) = h(C_T)$.

<u>Theorem 5</u>. Let C be an [n,k,2] binary code with $d^{\perp} \ge 3$, $T = \{1,2\}$ and $(110...0) \in C$. Then $h(C) = h(C_T)$.

Proof. If $v = (aa, v_1) \in \mathscr{H}(C)$ for some $a \in \mathbb{F}_q$ then $(00, v_1) \in C$, so $v_1 \in C_T$. On the other hand, $(aa, v_1) \in C^{\perp}$ and therefore $v_1 \in C_T^{\perp}$. Hence $v_1 \in \mathscr{H}(C_T)$. This shows that $h(C) \leq h(C_T)$. According to Theorem 3, we have $h(C_T) = h(C)$ or $h(C_T) = h(C) + 1$. Note that both cases are possible.

We conclude this note with a corollary for LCD codes with minimum weight 2.

Corollary 2. Let C be a linear [n,k,2] code over \mathbb{F}_q , $q = p^s$ for a prime $\overline{p, T} = \{1,2\}$ and $(110...0) \in C$. If $p \ge 3$, the code C is LCD if and only if C_T is LCD code. If p = 2 and $(110...0) \notin C^{\perp}$, the code C is LCD if and only if C_T is LCD code. If p = 2 and $(110...0) \in C^{\perp}$, then C is not an LCD code.

REFERENCES:

- Bouyuklieva S., Optimal binary LCD codes, Des. Codes Cryptogr. 89, (2021), 2445–2461. https://doi.org/10.1007/s10623-021-00929-w
- [2] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.

Stefka Bouyuklieva

Faculty of Mathematics and Informatics St. Cyril and St. Methodius University of Veliko Tarnovo Veliko Tarnovo, Bulgaria e-mail: stefka@ts.uni-vt.bg