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ABSTRACT: Periodic standing waves are considered for a Schrödinger
system. The existence of periodic waves of cnoidal-type as well as the stability
of the such solutions are studied.
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1 Introduction
In this work we consider the nonlinear Schrödinger system

(1)


iut +uxx + k1|u|2u+ γv2u = 0

ivt + vxx + k2|v|2v+ γu2v = 0,

where k1,k2,γ are positive constants, u and v are complex valued func-
tions. This equation appears in various problems, modeling many phe-
nomena such as nonlinear optics, Bose-Einstein condensate, etc. [1, 15,
16, 22].

Our principal aim is to study the stability of semitrivial family of
periodic wave solutions

(2) (u,v) = (eiwt
φ(x),0).

where φ(x) is a real-valued periodic function and w is a real parameter.
The problem of the nonlinear stability of solitary waves for non-

linear dispersive equations goes back to the works of Benjamin [5] and
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Bona [6] (see also [2, 23, 24]). A general approach for investigating
the stability of solitary waves for nonlinear equations, having a group
of symmetries, was proposed in [10]. The existence and stability of
solitary wave solutions for equation (1) have been studied in [19].

In recent years, the existence of periodic waves and their stabil-
ity properties have been considered in numerous papers. In the peri-
odic case, the spectra of the linearized equation depends on the choice
of function space. In the space of periodic functions, the spectrum con-
sists of isolated eigenvalues, while in the space of bounded functions the
spectrum is continuous[see [20]]. Existence of periodic traveling waves,
together with their stability, have been obtained in [3, 4, 12, 13, 14, 21]
for the nonlinear Schrödinger equation, modified KdV equation, com-
plex modified KdV equation, and generalized BBM equation. In [11],
stability of the periodic waves for (2) which do not oscillate around zero
(dnoidal type of solutions) was considered. It is proved that semitrivial
periodic waves are nonlinearly stable for k1 > γ and spectrally unstable
for k1 < γ < 3k1.

In this paper, we consider the spectral stability of the periodic
waves for (2) of cnoidal type. We prove that for k1 = γ periodic waves
of cnoidal type are spectrally unstable. This is achieved by using the
Hamiltonian-Krein index theory developed in [17, 18].

The paper is organized as follows. In Section 2, we construct
the semitrivial periodic waves. In Section 3, we setup the linearized
problem and compute the index that gives stability and instability. First
we establish the required spectral properties of the matrix Hill operator.
Then we calculate the Hamiltonian instability index.

2 Existence of periodic waves
In this section, we give some standard preliminary results. We

now construct the explicit solitons, which we later analyze for stability.
We consider the semi-trivial periodic traveling waves in the form u =
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eiwtφ(x), v = 0. Plugging in the system (1), we get the equation

(3) −wφ +φ
′′+ k1φ

3 = 0.

Let φ(x) = 1√
k1

ϕ(x). For ϕ one obtains the equation

(4) ϕ
′′−wϕ +ϕ

3 = 0.

Integrating once again, we obtain

(5) ϕ
′2−wϕ

2 +
1
2

ϕ
4 = c

and ϕ is a periodic function provided that the energy level set H(x,y)= c
of the Hamiltonian system dH = 0,

H(x,y) = y2−wx2 +
1
2

x4,

contains an oval (a simple closed real curve free of critical points). The
level set H(x,y) = c contains two periodic trajectories, if w > 0, c ∈
(−1

2 w2,0) and a unique periodic trajectory if w ∈R, c > 0. Under these
conditions, the solution of (5) is determined by H(ϕ,ϕ ′) = c and ϕ is
periodic function.

Let w> 0, c< 0 and ϕ0,−ϕ0 (ϕ0 > 0) are real roots, and iϕ1,−iϕ1
are complex roots of polynomial −z4 +2wx+ c. Then

ϕ
′2 =

1
2
(ϕ2

0 −ϕ
2)(−2w+ϕ

2
0 +ϕ

2).

Up to translations the solution is given by

(6) ϕ(x) = ϕ0cn(αx,κ),

where

(7) κ
2 =

ϕ2
0

2ϕ2
0 −2w

, α
2 = ϕ

2
0 −w =− w

1−2κ2 .

Since the fundamental period of cn(x) is 4K(κ), then the fundamental
period of periodic function ϕ defined by (6) is 2T = 4K(κ)

α
.
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3 Spectral stability
In this section, we consider the spectral stability of semitrivial

periodic wave with respect to perturbation with same period as ϕ . The
result relies on an instability index count for Hamiltonian systems. We
start this section with some information about the spectrum operator of
self-adjoint operator and some specific quantities, which are also com-
putable.

Let~u = eiwt(~Φ(x)+U(t,x)+ iW (t,x)), where ~Φ = ( 1√
k1

ϕ,0) and

(U,W ) ∈ R4 are perturbation functions with fundamental period 2T .
Plugging ~u into the equation (1) and ignoring the nonlinear terms, we
get the following linear equation

(8)
d
dt

(
U
W

)
= J L

(
U
W

)
,

where operators J and L are given by

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , L =



L1 0 0 0

0 L3 0 0

0 0 L2 0

0 0 0 L4


,

where

(9)

L1 =−∂ 2
x +(w−3ϕ2),

L2 =−∂ 2
x +(w−ϕ2),

L3 =−∂ 2
x +(w− γ

k1
ϕ2),

L4 =−∂ 2
x +(w+ γ

k1
ϕ2),
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We will consider the case γ = k1. In this case L3 = L2. We have the
following results related with the spectrum of the operator L .

Proposition 1. For γ = k1 the number of negative eigenvalues of the
operator L is four (n(L ) = 4). The kernel of L is three dimen-
sional (dimkerL = 3) and spanned by vectors ~ψ1 = (ϕ ′,0,0,0), ~ψ2 =
(0,0,ϕ,0), ~ψ3 = (0,ϕ,0,0)

Proof. Since L is diagonal operator, then the spectrum of L is σ(L )=
σ(L1)∪σ(L2)∪σ(L3)∪σ(L4).

It is well-known that the first five eigenvalues of Λ1 = −∂ 2
y +

6k2sn2(y,k), with periodic boundary conditions on [0,4K(k)] are sim-
ple. These eigenvalues and corresponding eigenfunctions are:

ν0 = 2+2k2−2
√

1− k2 + k4, φ0(y) = 1− (1+ k2−
√

1− k2 + k4)sn2(y,k),

ν1 = 1+ k2, φ1(y) = cn(y,k)dn(y,k) = sn′(y,k),

ν2 = 1+4k2, φ2(y) = sn(y,k)dn(y,k) =−cn′(y,k),

ν3 = 4+ k2, φ3(y) = sn(y,k)cn(y,k) =−k−2dn′(y,k),

ν4 = 2+2k2 +2
√

1− k2 + k4, φ4(y) = 1− (1+ k2 +
√

1− k2 + k4)sn2(y,k).

For Λ2 = −∂ 2
y + 2k2sn2(y,k) the first three eigenvalues and the

corresponding eigenfunctions with periodic boundary conditions on
[0,4K(k)] are simple and

ε0 = k2, θ0(y) = dn(y,k),

ε1 = 1, θ1(y) = cn(y,k),

ε2 = 1+ k2, θ2(y) = sn(y,k).

In the case of cnoidal solution, we have

L1 = α
2[−∂

2
y +6κ

2sn2(y,κ)− (1+4κ
2)] = α

2[Λ1− (1+4κ
2)].

It follows that the first five eigenvalues of the operator L1, equipped
with periodic boundary condition on [0,4K(k)] are simple and zero is
the third eigenvalue.

- 15 -



Hakkaev S., Syuleymanov T.

For L2, we have that

L2 = α
2[−∂

2
y +2κ

2sn2(y,κ)−1] = α
2[Λ2−1].

From the above, we have that n(L1) = 2, n(L2) = 1. Moreover
dimkerL1 = dimkerL2 = 1 with corresponding eigenfunctions ϕ ′ and ϕ

(L1ϕ ′ = 0, L2ϕ = 0). Since the operator L4 is strong positive, the num-
ber of negative eigenvalues of the operator L is four (n(L )= 4) and the
kernel of L is three dimensional and spanned by ~ψ1 = (ϕ ′,0,0,0), ~ψ2 =
(0,0,ϕ,0), ~ψ3 = (0,ϕ,0,0).

Definition 1. The stationary solution (eiwt 1√
k1

ϕ,0) is spectrally unsta-
ble if there exists at least one eigenvalue λ of the operator J L with
positive real part.

First, we present the theory developed in [17, 18] for the study of
spectral problem

(10) J L u = λu,

which we will be able to apply to our problem (8). We only present a
corollary of the results therein, which fits our purposes. We start with
some notations. We assume that L has a finite number of negative
eigenvalues n(L ) < ∞ and J : Ker(L )→ Ker(L )⊥. Let L ψi = 0
and V is a matrix with elements Vi j = 〈L −1J ψi,J ψ j〉. For a self-
adjoint operator H, define the number of the negative eigenvalues

n(H) = #{λ ∈ (−∞,0)∩σ(H)

The following formula is derived in [18]

(11) kr +2kc +2k− = n(L )−n(V ),

where kr is the number of positive solutions λ of (10), kc is the number
of solutions of λ with nonzero real and imaginary parts, whereas k− is
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the number of pairs of purely imaginary eigenvalues with negative Krein
signature.

Remark: The non-negative integers kc, k− are even. As a conse-
quence, if n(L ) = 1, it follows from (11) that kc = k− = 0 and

(12) kr = 1−n(V ).

Moreover, if right hand side in (11) is odd number, then kr ≥ 1 and we
have instability.

We use the index counting theory to determine the spectral stabil-
ity of the waves. We have the following result.

Theorem 1. Let γ = k1. Semitrivial periodic wave solution (eiwt 1√
k1

ϕ,0),
where ϕ is given by (6) is spectrally unstable.

Proof. From Proposition 1, we have n(L ) = 4, dimKerL = 3,
and ~ψ1 = (ϕ ′,0,0,0), ~ψ2 = (0,0,ϕ,0), ~ψ3 = (0,ϕ,0,0) ∈ KerL .

The anti-selfadjointness of J yields 〈J ~ψi, ~ψi〉 = 0, i = 1,2,3.
By direct computations 〈J ~ψi, ~ψ j〉= 0, i, j = 1,2,3. With this, we have
verified that J : Ker(L )→ Ker(L )⊥.

Thus, in order to determine the stability, one needs to compute
the index n(V ). For V , we have the following matrix representation

V :=

〈L −1J ~ψ1,J ~ψ1〉 〈L −1J ~ψ1,J ~ψ2〉 〈L −1J ~ψ1,J ~ψ3〉
〈L −1J ~ψ2,J ~ψ1〉 〈L −1J ~ψ2,J ~ψ2〉 〈L −1J ~ψ2,J ~ψ3〉
〈L −1J ~ψ3,J ~ψ1〉 〈L −1J ~ψ3,J ~ψ2〉 〈L −1J ~ψ3,J ~ψ3〉


We have

J ~ψ1 =


0
0
−ϕ ′

0

 , J ~ψ2 =


ϕ

0
0
0

 , J ~ψ3 =


0
0
0
−ϕ

 .
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and

L −1J ~ψ1 =


0
0

−L−1
2 ϕ ′

0

 , L −1J ~ψ2 =


L−1

2 ϕ

0
0
0

 ,

L −1J ~ψ3 =


0
0
0

−L−1
4 ϕ

 .

We have

V =

〈L−1
2 ϕ ′,ϕ ′〉 0 0

0 〈L−1
1 ϕ,ϕ〉 0

0 0 〈L−1
4 ϕ,ϕ〉

 .

Since L4 is strong positive, then 〈L−1
4 ϕ,ϕ〉> 0. The eigenfunction of L2

corresponding to the negative eigenvalue is θ0(αx) and eigenfunction of
L2 corresponding to the zero eigenvalue is θ1(αx). Since ϕ ′ ⊥ {θ0,θ1},
then 〈L−1

2 ϕ ′,ϕ ′〉 > 0. Hence, the number of negative eigenvalues of
matrix V depends on the sign of 〈L−1

1 ϕ,ϕ〉.
Now, we will compute 〈L−1

1 ϕ,ϕ〉. We will do it by constructing
the Green function for the operator L1. We already have ϕ ′ ∈ Ker(L1).
The classical approach is to consider the function

ψ(x) = ϕ
′(x)

∫ x

0

1
ϕ ′2(s)

ds,
∣∣∣∣ ϕ ′ ψ

ϕ ′′ ψ ′

∣∣∣∣= 1

which is also solution of L1ψ = 0. However, since ϕ ′ has zeros, the
integral above is not well-defined. Instead, using the identities

1
sn2(y,κ)

=− 1
dn(y,κ)

∂

∂y

cn(x,κ)
sn(y,κ)
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and integrating by parts, we get the equivalent formula

ψ(x)=
1

α2ϕ0

[
cn(αx)−ακ

2sn(αx,κ)dn(αx,κ)
∫ x

0

1+ cn2(αs,κ)
dn2(αs,κ)

ds
]
.

Thus, we may take the Green function in the form

L−1
1 f = ϕ

′
∫ x

0
ψ(s) f (s)ds−ψ(s)

∫ x

0
ϕ
′(s) f (s)s+C f ψ(x),

where C f is chosen such that L−1
1 f is periodic with same period as ϕ(x).

After integrating by parts, we get

(13) 〈L−1
1 ϕ,ϕ〉=−〈ϕ3,ψ〉+ ϕ2(T )+ϕ(0)2

2
〈ϕ,ψ〉+Cϕ〈ϕ,ψ〉.

Similarly as in [9], integrating by parts yields

〈ψ ′′,ϕ〉= 2ψ
′(T )ϕ(T )+ 〈ψ,ϕ ′′〉.

Using that L1ϕ =−2ϕ3, we get

〈ψ,ϕ3〉=−ψ
′(T )ϕ(T ).

Now, integrating by parts and using the above relations, we get

(14)

〈ϕ,ψ〉= 2
α3(1−κ2)

E(κ)

Cϕ =− ϕ ′′(T )
2ψ ′(T )〈ϕ,ψ〉+

ϕ2(T )−ϕ2(0)
2 .

With this, we obtain
(15)

〈L−1
ϕ,ϕ〉=− 2

α

E2(κ)−2(1−κ2)E(κ)K(κ)+(1−κ2)K2(κ)

(2κ2−1)E(κ)+(1−κ2)K(κ)
< 0.

From here, we get that n(V ) = 1 and that the right side of (11) is odd
number (n(L )−n(V ) = 4−1 = 3) and hence we have instability.
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