ON *P*-GROUPS HAVING A NORMAL ELEMENTARY ABELIAN SUBGROUP OF INDEX *P**

IVO M. MICHAILOV, IVAN S. IVANOV

ABSTRACT: In this article we prove a classification theorem for pgroups G having a normal elementary abelian group H of index p, under the assumption that the p-th lower central subgroup $G_{(p)}$ is trivial.

KEYWORDS: nilpotent groups, p-groups.

Let us first introduce some notations. The cyclic group of order n we denote by C_n . Let G be a group. The subgroups $G_{(0)} = G$ and $G_{(i)} = [G, G_{(i-1)}]$ for $i \ge 1$ are called the lower central series of G. Let $G = \langle H, \alpha \rangle$, where H is a normal abelian subgroup of G and $\alpha^p \in H$. Denote $H^p = \{h^p : h \in H\}$ and $H(p) = \{h \in H : h^p = 1, h \notin H^p\}$. For any $\beta \in H$ define $N_G(\beta) = \langle \alpha^{-x} \beta \alpha^x : 0 \le x \le p-1 \rangle$, the normalizer of $\langle \beta \rangle$ in G.

We are going to prove now some properties concerning the generators and relations in the *p*-groups *G* having a normal abelian group *H* of index *p* under the assumption that $G_{(p)} = \{1\}$. Bender started the study of these groups in [1], and the first author investigated the related Noether's problem in [2, 3].

Lemma 1. Let *p* be a prime, let $n \ge 2$ and let *G* be a group of order p^n with a normal abelian subgroup *H* of order p^{n-1} . Then *H* is subject to the following conditions:

1. For any $\beta_1 \in H, \beta_1 \notin Z(G)$, there exist $\beta_2, \dots, \beta_k \in H$ for some $k \ge 2$ such that $[\beta_j, \alpha] = \beta_{j+1}$, where $1 \le j \le k-1$ and $\beta_k \ne 1$

 $^{^{*}}$ Partially supported by Scientific Research Grant RD-08-86/30.01.2018 of Shumen University.

is central. We call *k* the length of the commutator chain, starting with β_1 .

- 2. The normalizer $N_G(\beta_1)$ is generated by $\beta_1, \beta_2, \ldots, \beta_k$.
- 3. $N_G(\beta_1) = N_G(\beta'_1)$ for $\beta'_1 \in N_G(\beta_1)$ if and only if $\beta'_1 = \prod_{i=1}^k \beta_i^{x_i}$ for some integers x_i , where $gcd(x_1, p) = 1$.
- 4. Let $\beta = \prod_{i=2}^{k} \beta_i^{x_i}$ for some integers x_i , such that $gcd(x_{i_0}, p) = 1$, where $i_0 = \min\{i : x_i \neq 0\}$. Then β appears in a commutator chain starting with a generator β'_1 , i.e., there exist $\beta'_1, \dots, \beta'_{i_0} = \beta$ such that $[\beta'_j, \alpha] = \beta'_{j+1}$, for $1 \le j \le i_0 - 1 \le k - 1$, and $N_G(\beta_1) =$ $N_G(\beta'_1)$. In particular, if $\beta_2^p = 1$, then every element $\beta \in \langle \beta_2, \dots, \beta_k \rangle$ appears in a commutator chain starting with a generator β'_1 such that $N_G(\beta_1) = N_G(\beta'_1)$.

Proof. (1) Since *G* is nilpotent, there exist $\beta_2, \ldots, \beta_k \in H$ for some $k \ge 2$ such that $[\beta_j, \alpha] = \beta_{j+1}$, where $1 \le j \le k-1$ and $\beta_k \ne 1$ is central.

(2) We have that $\beta_2 = [\beta_1, \alpha] = \alpha^{-0}\beta_1^{-1}\alpha^0 \cdot \alpha^{-1}\beta_1\alpha \in N_G(\beta_1)$, and for any $x: 3 \le x \le k$ we make the inductive assumption that $\beta_{x-1} = [\beta_1, \alpha^{x-2}]h$ for $h \in \langle \alpha^{-y}\beta_1\alpha^y: 0 \le y \le x-3 \rangle \le N_G(\beta_1)$. Using the identity $[\beta_1, \alpha^{x-1}] = [\beta_1, \alpha^{x-2}][\beta_1, \alpha][[\beta_1, \alpha^{x-2}], \alpha]$ we see that $[[\beta_1, \alpha^{x-2}], \alpha] = [\beta_{x-1}h^{-1}, \alpha] = \beta_x[h^{-1}, \alpha] = [\beta_1, \alpha^{x-1}][\beta_1, \alpha^{x-2}]^{-1}[\beta_1, \alpha]^{-1}$. Hence $\beta_x = [\beta_1, \alpha^{x-1}]h_1 \in N_G(\beta_1)$, where $h_1 = [\beta_1, \alpha^{x-2}]^{-1}[\beta_1, \alpha]^{-1}[h, \alpha] \in \langle \alpha^{-y}\beta_1\alpha^y: 0 \le y \le x-2 \rangle \le N_G(\beta_1)$. Since $N_G(\beta_1)$ is the minimal normal subgroup of G containing β_1 , we obtain that $N_G(\beta_1) = \langle \beta_1, \dots, \beta_k \rangle$.

(3) Let $\beta'_1 = \prod_{i=1}^k \beta_i^{x_i}$ for some integers x_i , where $gcd(x_1, p) =$ 1. From (2) it follows that $N_G(\beta_1) \ge N_G(\beta'_1)$. On the other hand, $[\beta'_1, \alpha^{k-1}] = \beta_k^{x_1} \in N_G(\beta'_1), [\beta'_1, \alpha^{k-2}] = \beta_{k-1}^{x_1} \beta_k^{x_2} \in N_G(\beta'_1), \dots,$ $[\beta'_1, \alpha] = \prod_{i=2}^k \beta_i^{x_{i-1}} \in N_G(\beta'_1)$ and $\beta'_1 = \prod_{i=1}^k \beta_i^{x_i} \in N_G(\beta'_1)$. Therefore, $\beta_1, \dots, \beta_k \in N_G(\beta'_1)$, i.e., $N_G(\beta_1) \le N_G(\beta'_1)$. Conversely, if $N_G(\beta_1) = N_G(\beta'_1)$, we have that $\beta'_1 = \prod_{i=1}^k \beta_i^{x_i}$ and $\beta_1 = \prod_{i=1}^k \beta_i^{y_i}$ for $\beta'_{i+1} = [\beta'_i, \alpha]$ and some integers x_i, y_i . Therefore, $\beta_1 = \beta_1^{x_1y_1} \prod_{i=2}^k \beta_i^{x_iy_1} \prod_{i=2}^k \beta_i^{y_i}$, which is possible only if $x_1y_1 \equiv 1 \pmod{\operatorname{ord}(\beta_1)}$, and hence $\operatorname{gcd}(x_1, p) = 1$.

(4) We can write $\beta = \prod_{i=i_0}^k \beta_i^{x_i} = \prod_{i=i_0}^k [\beta_{i-1}^{x_i}, \alpha] = [\prod_{i=i_0}^k \beta_{i-1}^{x_i}, \alpha].$ Put $\beta'_{i_0-1} = \prod_{i=i_0}^k \beta_{i-1}^{x_i}$, so $[\beta'_{i_0-1}, \alpha] = \beta$. If $i_0 = 2$ then $N_G(\beta_1) = N_G(\beta'_1)$ (according to (3)) and $[\beta'_1, \alpha] = \beta$. If $i_0 > 2$ then $\beta'_{i_0-1} = [\beta'_{i_0-2}, \alpha]$ for $\beta'_{i_0-2} = \prod_{i=i_0}^k \beta_{i-2}^{x_i}$. It is clear now that proceeding in this way we will obtain at the end a generator β'_1 such that $N_G(\beta_1) = N_G(\beta'_1)$ and $[\beta'_j, \alpha] = \beta'_{j+1}$ for $1 \le j \le i_0 - 1$ and $\beta'_{i_0} = \beta$.

Finally, if $\beta_2^p = 1$, then from $[\beta_j^p, \alpha] = \beta_{j+1}^p$ it follows that $\beta_3^p = \cdots = \beta_k^p = 1$. Clearly, every non-trivial element $\beta \in \langle \beta_2, \dots, \beta_k \rangle$ can be written as $\beta = \prod_{i=2}^k \beta_i^{x_i}$ for some integers x_i , such that $gcd(x_i, p) = 1$.

Next, we are going to consider the special case when H is an elementary abelian group.

Theorem 2. Let *p* be prime, let $n \ge 2$ and let *G* be a group of order p^n with an abelian normal subgroup $H \simeq (C_p)^{n-1}$, the elementary abelian group of order p^{n-1} . Then *H* is subject to the following conditions:

- 1. There exist elements $\gamma_1, \ldots, \gamma_s \in H$ (for some $s \leq n-1$) such that $H \simeq N_G(\gamma_1) \times \cdots \times N_G(\gamma_s)$;
- 2. For any $i: 1 \le i \le s$ there exists a natural number $k_i \le p$ such that $N_G(\gamma_i) \simeq (C_p)^{k_i}$, and generators $\beta_{i1}, \ldots, \beta_{ik_i} \in N_G(\gamma_i)$, such that $\beta_{i1} = \gamma_i, [\beta_{ij}, \alpha] = \beta_{ij+1}$ for $1 \le j \le k_i 1$ and β_{ik_i} is central in *G*.

Proof. First, let us decompose *H* as a direct product of cyclic groups: $H = \langle \gamma_1 \rangle \times \cdots \times \langle \gamma_{n-1} \rangle$. Then there exists a generator, say γ_1 , such that $\gamma_1 \notin [H, \alpha]$. Indeed, if we suppose that $\gamma_i \in [H, \alpha]$ for all *i*,

from the commutation rule $[a, \alpha][b, \alpha] = [ab, \alpha]$ we get that any element $\gamma = \prod_i \gamma_i^{a_i} \in H$ is in $[H, \alpha]$. But then we will obtain infinite commutator series $[\alpha_{j+1}, \alpha] = \alpha_j, \alpha_1 = \gamma_1, j = 1, 2, ...$, which is a contradiction, since *G* being a *p*-group is nilpotent.

Note that, since any group of order p^2 is abelian, $\langle \gamma_1 \rangle$ is normal in *G* if and only if γ_1 is central in *G*. Clearly, if γ_1 is central in *G*, then $N_G(\gamma_1) = \langle \gamma_1 \rangle \simeq C_p$. If all elements of *H* are central, then *G* is abelian and s = n - 1.

Now, for any $i: 1 \le i \le n-1$ such that γ_i is not central in *G*, put $\beta_{i1} = \gamma_i$. Since *G* is nilpotent, there exist $\beta_{i2}, \ldots, \beta_{ik_i} \in H$ for some $k_i \ge 2$ such that $[\beta_{ij}, \alpha] = \beta_{ij+1}$, where $1 \le j \le k_i - 1$ and $\beta_{ik_i} \ne 1$ is central. Since α^p is in *H*, we have that

$$\beta_{i1} = \alpha^{-p} \beta_{i1} \alpha^p = \beta_{i1} \beta_{i2}^{\binom{p}{1}} \beta_{i3}^{\binom{p}{2}} \cdots \beta_{ip}^{\binom{p}{p-1}} \beta_{ip+1} = \beta_{i1} \beta_{ip+1},$$

therefore $\beta_{ip+1} = 1$. Then $G_{(p)} = \{1\}, k_i \leq p$ and $\beta_{ik_i+1} = \cdots = \beta_{ip+1} = 1$. According to Lemma 1 we get $N_G(\gamma_i) = \langle \beta_{i1}, \dots, \beta_{ik_i} \rangle$.

Next, without loss of generality we may assume that γ_1 has the maximal length of the commutator chain, i.e., $k_1 \ge k_j$ for $2 \le j \le n-1$. Put $\beta_1 = \beta_{11} = \gamma_1, \beta_2 = \beta_{12}, \dots, \beta_{k_1} = \beta_{1k_1}$. Observe that the elements $\beta_1, \dots, \beta_{k_1}$ are independent generators of $N_G(\gamma_1)$. Indeed, if we suppose they are dependent, then $\beta_k = \prod_{i < k} \beta_i^{x_i}$ for some $0 \le x_i < p, 1 \le k \le k_1$. Forming the commutator chain of β_k , we see that there exists a commutator that can be decomposed as a product of $\beta_k^{x_j}$ (for some $x_j \ne 0$) and powers of β_i for $i \ne k$. Thus we will get an endless commutator chain, which is impossible, *G* being nilpotent.

If $k_1 < n-1$ then there exists another generator, say $\gamma_2 \notin N_G(\gamma_1)$. We can also assume that γ_2 is not central, otherwise $H = N_G(\gamma_1) \times \langle \gamma_2 \rangle \times \cdots \times \langle \gamma_s \rangle$ and we are done. Put $\beta_{k_1+1} = \beta_{21} = \gamma_2, \beta_{k_1+2} = \beta_{22}, \dots, \beta_{k_1+k_2} = \beta_{2k_2}$. Again, the elements $\beta_{k_1+1}, \dots, \beta_{k_1+k_2}$ are independent generators of $N_G(\gamma_2)$. However, it is possible that $\beta_{k_1+1}, \dots, \beta_{k_1+k_2}$ are dependent modulo $N_G(\gamma_1)$, i.e., $\prod_{i=1}^{k_1} \beta_i^{x_i} \prod_{i=k_1+1}^{k_2} \beta_i^{x_i} = 1$ for $x_i : 0 \le x_i \le p-1$ such that $x_{i_0} \ne 0, x_{j_0} \ne 0$ for some $i_0, j_0 : 1 \le i_0 \le k_1, k_1+1 \le j_0 \le k_1+k_2$. If we suppose that $x_{j_1} \neq 0$ for some $j_1 \neq j_0, k_1 + 1 \leq j_1 \leq k_1 + k_2$ we will obtain that $\beta_{j_1} = \beta_{j_0}^x \cdots$ for $x \neq 0$ which leads to an endless commutator chain. Thus the only possibility is that there exists $\ell_2 \leq k_2$ such that $\beta_{k_1+1}, \ldots, \beta_{k_1+\ell_2-1} \notin N_G(\gamma_1)$, but $\beta_{k_1+\ell_2} \in N_G(\gamma_1)$.

According to Lemma 1 (4), $\beta_{2\ell_2} = \beta_{k_1+\ell_2}$ appears in a commutator chain starting with a generator γ'_1 such that $N_G(\gamma_1) = N_G(\gamma'_1)$, i.e., there exist $\beta'_{11}, \ldots, \beta'_{1\ell_1} \in N_G(\gamma'_1)$, such that $\beta'_{11} = \gamma'_1, [\beta'_{1j}, \alpha] = \beta'_{1j+1}$ for $1 \le j \le \ell_1 - 1$ and $\beta'_{1\ell_1} = \beta_{2\ell_2}$ for some $\ell_1 \le k_1$. Notice that $k_1 - \ell_1 = k_2 - \ell_2$, because after $\beta_{2\ell_2}$ the two commutator chains coincide. Since we assumed that $k_1 \ge k_2$, we get $\ell_1 \ge \ell_2$. Define $\gamma'_2 = \beta'_{1\ell_1-\ell_2+1}\gamma_2$ and $\beta'_{21} = \gamma'_2, [\beta'_{2j}, \alpha] = \beta'_{2j+1}$ for $1 \le j \le \ell_2 - 1$. Therefore, $\beta'_{2\ell_2} = 1$ and $\beta_1, \ldots, \beta_{k_1}, \beta'_{21}, \ldots, \beta'_{2\ell_2-1}$ are independent generators of the whole subgroup $N_G(\gamma_1)N_G(\gamma'_2)$.

If $k_1 + \ell_2 - 1 < n - 1$ then there exists another generator, say $\gamma_3 \notin N_G(\gamma_1)N_G(\gamma'_2)$ and we may proceed in a similar manner. Namely, suppose that for some $t \ge 2$ there exist generators $\gamma'_2, \ldots, \gamma'_t$ such that $\beta'_{i1} = \gamma'_i, [\beta'_{ij}, \alpha] = \beta'_{ij+1}$ for $1 \le j \le \ell_i - 1, 2 \le i \le t$ and $\prod_{i=2}^t \prod_{j=1}^{\ell_j - 1} \beta'_{ij} \notin N_G(\gamma_1) \setminus \{1\}$ for any $0 \le x_{ij} \le p - 1$. We proved this assertion for t = 2, and we will show that it holds for t + 1.

Assume that $\gamma_{t+1} \notin N_G(\gamma_1)N_G(\gamma'_2)\cdots N_G(\gamma'_t)$ and $\prod_{i=2}^t \prod_{j=1}^{\ell_i-1} \beta_{ij}^{\prime x_{ij}}$. $\prod_{j=1}^{k_{t+1}} \beta_{t+1j}^{x_{t+1j}} \in N_G(\gamma_1) \setminus \{1\}$. If we suppose that $x_{t+1j_0} \neq 0$ and $x_{t+1j_1} \neq 0$ for some $1 \leq j_0 < j_1 \leq k_{t+1}$ we will obtain a contradiction with the nilpotency of *G*. Thus the only possibility is that there exists $\ell_{t+1} \leq k_{t+1}$ such that $\beta_{t+1j} \notin N_G(\gamma_1)N_G(\gamma'_2)\cdots N_G(\gamma'_t)$ for $1 \leq j \leq \ell_{t+1} - 1$, where $\beta_{t+11} = \gamma_{t+1}, \beta_{t+1j+1} = [\beta_{t+1j}, \alpha]$, but $\beta_{t+1\ell_{t+1}} = \beta \prod_{i=2}^t \prod_{j=1}^{\ell_{i-1}} \beta_{ij}^{\prime y_{ij}}$, where $\beta \in N_G(\gamma_1) \setminus \{1\}$.

According to Lemma 1 (4), β appears in a commutator chain starting with a generator γ_1'' such that $N_G(\gamma_1) = N_G(\gamma_1'')$, i.e., there exist $\beta_{11}'', \ldots, \beta_{1\ell_1}'' \in N_G(\gamma_1'')$, such that $\beta_{11}'' = \gamma_1'', [\beta_{1j}'', \alpha] = \beta_{1j+1}''$ for $1 \le j \le \ell_1' - 1$ and $\beta_{1\ell_1'}'' = \beta$ for some $\ell_1' \le k_1$. Notice that $k_1 - \ell_1' \le k_{t+1} - \ell_{t+1}$. (Here we might have an inequality, when $\beta_{t+1\ell_{t+1}+k_1-\ell_1'} \notin Z(G)$.) Since we assumed that $k_1 \ge k_{t+1}$, we get $\ell'_1 \ge \ell_{t+1}$. Define $\gamma'_{t+1} = \beta_{1\ell'_1-\ell_{t+1}+1}^{\prime\prime-1} \gamma_{t+1}$ and $\beta'_{t+11} = \gamma'_{t+1}, [\beta'_{t+1j}, \alpha] = \beta'_{t+1j+1}$ for $1 \le j \le \ell_{t+1} - 1$. Therefore, $\beta'_{t+1\ell_{t+1}} = \prod_{i=2}^t \prod_{j=1}^{\ell_i} \beta_{ij}^{\prime y_{ij}} \in N_G(\gamma'_2) \cdots N_G(\gamma'_t)$ and our assertion is proved.

We can continue this process until we finish the generators of H. Thus we will obtain finally that $H = N_G(\gamma_1)N_G(\gamma'_2)\cdots N_G(\gamma'_s)$ for some generators $\gamma_1, \gamma'_2, \ldots, \gamma'_s$ of direct cyclic factors such that $N_G(\gamma_1) \cap (N_G(\gamma'_2)\cdots N_G(\gamma'_s)) = \{1\}$. Therefore, $H = N_G(\gamma_1) \times (N_G(\gamma'_2)\cdots N_G(\gamma'_s))$, and we can apply induction on $N_G(\gamma'_2)\cdots N_G(\gamma'_s)$ (which, of course, is normal in G) to finish the proof.

REFERENCES:

- H. A. Bender, On groups of order p^m, p being an odd prime number, which contain an abelian subgroup of order p^{m-1}, Ann. Math., 29 No. 1/4 (1927-1928), 88–94.
- [2] I. Michailov, Noether's problem for abelian extensions of cyclic *p*-groups, *Pacific J. Math*, **270** (1), 2014, p. 167-189.
- [3] I. Michailov, Noether's problem for *p*-groups with an abelian subgroup of index *p*, *Alg. Coll.*, Vol. 22, No. spec01, pp. 835-848 (2015).

Ivo Michailov

Faculty of Mathematics and Informatics, Konstantin Preslavsky University, Universitetska str. 115, 9700 Shumen, Bulgaria E-mail: i.michailov@shu.bg

Ivan Ivanov

Faculty of Mathematics and Informatics, Konstantin Preslavsky University, Universitetska str. 115, 9700 Shumen, Bulgaria E-mail: slaveicov@abv.bg