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RECOVERING SPACE CURVES BY MOBIUS INVARIANTS*
RADOSTINA P. ENCHEVA

ABSTRACT: One subgroup of the Mobius group in the Euclidean 3-
space R? is induced by the group of rotations on the unit 3-sphere in the Eu-
clidean 4-space R* via a stereographic projection. We find two functions as
Mobius invariants and they determine a Frenet space curve up to a transfor-
mation of considered group. We use these invariants to construct space curves
and for that purpose we apply an algorithm in the computer system Mathemat-
ica.
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1 Introduction

The three dimensional unit sphere S°, centered at the origin O and
embedded in the four-dimensional Euclidean space R*, is mapped via
the stereographic projection 7 with a center at a point P € S* onto an
equatorial hyperplane & C R* through the origin O with a normal vector
OP. We consider the hyperplane & as a three-dimensional Euclidean
space R3. The group of rigid motion on the sphere S? coincides with the
group of rotations SO(4) in R* about the origin O. This group induces
in R3 via the stereographic projection 7 a subgroup M of the Mobius
group Mob(3) in R3. For that group it is naturally to apply the algebra of
quaternions H, where H C H is the set of pure quaternions (with zero
real parts). If w € H is a quaternion then the norm of w is denoted by
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|w|, the quaternion w € H is the conjugate quaternion of w and ||w/|?> =
w.w = w.w. The transformations from the group My can be represented
by the quaternion formalism

F(q) =(A.q+B).(B.g +A),

where A,B € H, g € Hy, ||A||*>+||B||> = 1 and A.B+B.A = 0, identifying
Hyo with R* (Theorem 3 in [2]).

It is well-known that the Euclidean curvature sc and the Euclidean
torsion T determine the space curves up to orientation preserving mo-
tions in R3. This fundamental theorem in the classical curve theory is
extended to the orientation preserving similarity group in [1]. Recov-
ering a space curve by a pair of real functions up to an orientation pre-
serving motion or a similarity transformation is based on the mentioned
theorems. The Euclidean geometry of curves on S* C R* is carried nat-
urally on IR? by the stereographic projection 7 and it can be interpreted
with respect to the subgroup My CMob(3) in R?. The differential geom-
etry of curves with respect to the Mobius group is developed by Udo
Hertrich-Jeromin in [7]. In the presented paper it is used a different
approach. Relations between the Euclidean differential-geometric in-
variants of curves on the sphere S and the corresponding curves in R3
via the stereographic projection 7 are found.These relations determine
invariants of curves with respect to the group M. They have an essen-
tial roll of recovering the curves in R up to transformations from the
considered group. The case of plane curves, recovering by one Mobuis
invariant, is explored in [3] and [4].

2 Preliminaries

Let K = O0¢é,¢é3¢4 be a right-handed Cartesian coordinate sys-
tem in R*. For any two vectors = (x', x>, x*,x*) and y = (y',y%,y*,»*)
in R* the canonical inner product < x,y > is defined by < x,y >=
Y x'yl. We denote the norm of the vector x by ||z|| = /< @,z >.

The inner product and the norm of vectors in R? are determined in a
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similar way.
Let 8 = {(x 22, ,2%) € R ()2 4 ()% + ()2 + ()2 = 1}
be the unit sphere in R*, centered at the origin O, and let
1= (x',2%,x3,x*),x! # 1 be the position vector of an arbitrary point
on S3, different from the pole P(1,0,0,0). Denoting by (u',u?,u?) the
coordinates of any position vector w of an arbitrary point in the equato-
rial hyperplane & = R? with respect to the Cartesian coordinate system
K' = 0¢,¢,¢; in R?, where ¢, = ¢,, &, = &;, &, = &, thf: 1stelreographic
. ler
map 7 : S*\{P} — R3 is given by the equalities u' = T i=1,2,3.
1

For the reverse map 7~ we have the equalities

G R
- (ul)2+(u2)2+(u3)2+1’
. 2ui—1
o= i =2,3,4.
x W @2+ @R =7

Making the infinity co correspond to the pole P, the stereographic pro-
jection 7 and the reverse map 7! are bijective conformal maps.
We consider the parametric equations of the sphere S? in the form

o u3)_{HuH2—1 2u! 2u® 2u’ }
o >+ 17 [l 17 flaf]> 4+ 17 fJef|> + 1

al dl dl
The standard orthogonal tangential frame field { } at any

dul” du?’ dud
point of the sphere S*, except the point P, is given by

dl P L= P @@ s s
l12871 = u.{u, 5 ,—U U, —uu
I, = o _ w i i, L+ (') — () + (”3)27_142”3

du? 2

ol 1 1y2 2\2 _ (,,3)2
li=55 = U {M3,_M1M3,_M2M37 )7+ )7 - ) },

u’ 2
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4
WhereH:Wandl%:l%:lzzu.
A regular space curve in R? with a nowhere vanishing Euclidean cur-
vature is called a Frenet space curve. For a given Frenet space curve
c:u(s) = (u'(s),u®(s),u’(s)) in R, parameterized by an arc-length pa-
rameter s, we denote by ™" the differentiation with respect to s. Apply-
ing the Frenet equations for the derivatives (see [5]), it is easy to prove

the equalities

</ v >=—<u u >= -5
(1)
u\’
<u u" >= <2> =, < xu" ' >= -1,

where sz and 7 are the Euclidean curvature and the Euclidean torsion of
c, respectively.

Lemma 2.1. Let v = v(s) be a vector function in R with coordinate

functions V(s) = Zij:l Ff?jui/u<//, k=1,2,3, where Ff?j are the Christof-

fel symbols for the sphere S* and u' = u'(s), i = 1,2,3 are the coordinate
functions of the unit speed curve ¢ : uw = u(s). Then

/
v=y/L.u—U. (;) a’

and

!/

conrsmn(t) [ EG)Y

1 /
v? = pu?, <v,u’>:—% (,u) <u' xu" v>=/p<uxu u’ >
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2 1 ” m 1 "
coats = -t (1Y (LY
H 4 \u 2 \u

<u'xu' v> = p<uxu,u >.

Proof. The Christoffel symbols Fﬁ.‘j for the sphere S* are given by

k k —Viaw, k=i
(2) =T =q Vi, k#i=j;
0, ktidt]

Hence,

3
) Filju’/ufl =T}, ()2 4+ 20 ut u? 2T + T, () 2+
ij=1

+ Fé3(u3/)2 = —/nu! (ul,)2 — 2\/ﬁu2u1,u2/ - 2\/[.7143141/143,4-
+ \//Tml(uzl)2 + \/,Eul(uy)2 = —Zﬁull(ulull + 2 + u3u3/)+
VA () + @+ () = — () !

=1

Similarly, szzl F%jui/uj/ = —\/ﬁ(uz)'uzl—i— Hu?* and szzl F?jui/uf/ =
/ /!

! . 2N/ 2/ 2 1
—/E(u?)'w® + /. Since (u?) = ||ul|* = (— 1> =/ () ,
vE vh VH Vi T

we get the expression of the vector function v. The next scalar products
in the statement of the lemma are obtained by (1) and

VH

/
<u,u >=
’ 2

1 !
<H) after the necessary differentiations. O

The proofs of the next lemmas are routine, replacing the Christoffel
symbols by (2).
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Lemma 2.2. Let w = w(s) be a vector function in R with coordinate
functions wk(s) = Z?,j:l Ffjui/uj/’, k=1,2,3, where Ff?j are the Christof-
fel symbols for the sphere S* and u' = u'(s), i = 1,2,3 are the coordinate

functions of the unit speed curve ¢ : u = u(s). Then

__H l/ ”_|_l 4\/>+21/2—2 l// !
w—zu.u4 ,u,uu u“ u

and
1 /
<w,u’ >= _EB () %2, <w,v >=0,
2\
2 1 2 1 "
<w,u’>——<v,u”>—\/ﬁ+‘i(u> J2L<u> .

Lemma 2.3. Let 1) = 1)(s) be a vector function in R with coordinate
functions n*(s) = Zij:lrf/‘”i/(”/ X u”).], k = 1,2,3, where Ff-‘j are the
Christoffel symbols for the sphere S*, u' = u/(s), i = 1,2,3 are the coor-
dinate functions of the unit speed curve ¢ : u = u(s) and (u' x u")’, j =
1,2,3 are the coordinate functions of the vector product u' x u" in R3.
Then

1 /
n= —% (H) (u' xu") = <uxu u >
and
<n,u” >=<n,v>=0,
<nu >=—<u xu" v>=—/u<uxu,u’ >.

Let ¢ be a Frenet space curve in R?>. We denote by 7 the stereo-
graphic pre-image of ¢ on the sphere S?, i.e. 7(y) =c.Letl =1(c), 6 €
J be the vector parametric equation of y, parameterized by an arc-length
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parameter 6. We have that 1> = 1,1? =l and < I,l' >=0, < [,l" >=
—1, < 1,I"” >= 0. The vector field I +1" is orthogonal to ! and (I +
") =1"2 —1 > 0. A curve ¥ is said to be regular if (1 +1")> =1"—1>
0 for every o € J. A moving frame Itnb at any point of a regular curve y

. . 141"
on S is introduced as follows: t =1', n = [T+

vector, determined by the condition Itnb to be a right-handed orthonor-
mal frame. The function 3¢ = ||l +1"|| = vI"> — 1 > 0 is called a spher-
ical curvature of y. The vector field

and b is the unique

_ ~/ 1 ~2 1
n’—i—%t:—%(l—kl”)—k ‘t% Ut
a4 4 el

has the direction of the vector b. So, we can put n’ + 3¢t = tb. The
function 7 is called a spherical torsion of . For the moving frame ltnb
we obtain the following Frenet type formulas

U!'=t, t=—l+xn, n'=—3t+7b, b/ =—-7Tn.

If we denote by V; the covariant differentiation along the curve y on S?
then Vit = >n, Vin = — 3t + tb and V¢b = —Tn. Hence, 3z = ||V4t||
and T = — < V;b,n > (see [6]).

3 Main theorem

The fundamental theorem in the space curve theory states that
the Euclidean curvature s¢ and the Euclidean torsion 7 determine the
space curve, parameterized by an arc-length parameter, up to a rigid
motion in R3. Also, the spherical curvature 3 and the spherical torsion
7 define the curve, lying on the sphere S* C R*, up to a rotation, pre-
serving the sphere S*. Relations between the invariants s, T, %z, T of the
corresponding curves via the stereographic projection 7 will define any
Frenet space curve up to transformation of the group Mj.

Theorem 3.1. Let ¢ be a Frenet space curve in R?, parameterized by
an arc-length parameter s, and let 7y be its stereographic pre-image on
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the sphere S?, i.e. T(y) = c. If s = »(s) and T = 7(s) are the Euclidean
curvature and the Euclidean torsion of the curve ¢ and 3 = >(s) and
T = 1(s) are the spherical curvature and the spherical torsion of the
curve Y then

2 "
(3) %2:1%2—1—3”<l> +(1>
u 4 \u u
@ %:cos~9% _s1n~9%,,
M H
where

(5) cosO : 2 (1) + (1Y Vi
= % _— = —_— p— J— — .
NPz A\ TH H
Proof. Let l = l(s) be a vector parametric equation of y and 6 = o (s)
be its arc-length function. If ¢ : u(s) = (u'(s),u?(s),u’(s)) then [ =

dl &,
I Z(u’)’ l;. The form do = \/[ids is the linear element of the curve
S

v on the sphere S*. Thus, the unit tangent vector field is represented by
1 .
t = —1. Applying the covariant differentiation V4 we obtain that

Ji

3

el L LY
(6) Vtt—];<‘u(”) +uv +2<“> (M)>lk,

where V¢ = vk (s), k = 1,2,3 are the coordinate functions of the vector
function v, defined in Lemma 2.1. Hence, 3> =
1 1 1\? 2 1Y
:]\Vtt\zz}fz+v2+“<> +<u”,v>+<> <v,u >
H H 4 \u u H
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and replacing with the equalities in Lemma 2.1 we get (3). The stereo-
graphic projection 7 and the reverse map 7! are conformal maps and
the differential 7z,"! of the reverse map 7! is a similarity transforma-

tion between the corresponding tangent spaces with a coefficient /1L .
" ! n

fT=w,N=2 B=TxN=
yaa

are the Frenet frame vec-

1
tor field along the curve ¢ then 7, ' (N) = = Y («)"l; and 7, ' (B) =
=

Vil

1 :
Y (' x u")T;. Vectors 7' (N) and 7' (B), lying in the plane, de-

» i=1
termined by vectors 7 and b, are orthogonal and let = /(n, 7, ' (N)).
cos@ _; sin@ ~1(B). Hence,

B (V) + TR

Then n =

1 1 S
cosf = — <n,m, [(N)>= = <Vet, Y )'l; >
7 (N)>= o < Vet 30

and

1 3 )
—= <Vet, Y (u xu")'l; > .

1
sinf = — < n,m, (B) >=
i <

Using (6) we obtain that cos 8 = (u”2+ <v,u” >) =

1
/L

1
> NG (s+ <wv,u” >), whence applying Lemma 2.1 we get (5).
v
Also,
1 1 ! n 1 !/ "
(7) smez%%\/ﬁ<v,uxu >= = <uxul >

Observing that 7 is an orientation preserving map in odd dimension, we
—sin 0 cos O
s S(B)=

B (N) + B

-9 .
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3

1
=
variant differentiation technique, we get
1 13
Vib=—Vib=—— [
VR vz kgl

—cosO(n*+ (' x u”’)k)> + (

Thus,

~ 1
T=—<Vibn>=—= <V, Vit >=
V1

<w, v >+ <u" U >+ <wo>s+<u v> |+

A

<w,u >+ <u” u >

%\l/ﬁ (sin@(w* + (")~
Y- (z8)
~ cost
v

B

sin 6

2 /1L

<nu’' >+<u xd" v >+<nu>+<d xdv>

cos 0

PN

sin 6

PN

q
_i_i
U

(

!/
> Pt <u v>
————

C
1

!
><n,u’>+
b=

(

1

U

cos 0

PN
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1 [sin6 sinf (1Y’ cos 6 cosO (1Y’
== A+ — | .B— .C— — | .D+
x| xU 2 \ U P 2 \ U
1 (sin@)’ 1 (cos@)l ]
+— E—— .F.
VE\eyit) T i\ ey
Applying the lemmas 2.1, 2.2, 2.3 and taking account of the equali-
ties (1), (5), (7) we have that A = —ss¢ 4\ /ll(sc3¢c0s6), —B=E =
VHxcos8,C=—5*T+ /l(3sin0)', —D=F = \/ls5zsin 6. Re-

placing the found expressions in the equality above we obtain (4) after
simple rearranges and simplifications. O

4 Mobius invariants of space curves

It is obvious that the arc-length function ¢ = o (s) is an invariant
with respect to the group My. Let we denote by S (s) the Schwarzian
derivative of the function 0 = o (s). Then we have that

"\ 1/c"\* 1(3 ,/1\"? I
S =—] —-=(— ) === -] — - .
©=(%)-2(%) =27 G) ()
If s = s(0o) is the reverse function of ¢ then we get 0 = Sso5(0) =
So(s) (42) ? £ 5,(0) = So(s) = — S, () applying the chain rule for the
Schwarzian derivatives. The functions > and T from Theorem 3.1 can be

expressed in terms of the arc-length parameter 6. We set £(0) = 3%(0),
% (0) = 7(0) and we obtain that

(8) R(o) = ;%—ngw)

T(o) = ,uf (%rcose f s1n9>,

1 1 /du 2
%\/ﬁ <%2+‘uss(6)+8‘u(dG) \/,lj>

-31 -

where cos 0 =




Encheva R.

Corollary 4.1. The functions R = R(0) and T = %(0), define by (8),
are invariants under the group M.

Proof. The proof is omitted. O

Theorem 4.2 (Uniqueness theorem). Let I C R be an open interval and
letci: I —R3,i=1,2 be two Frenet space curves, parameterized by the
same arc-length parameter © of their stereographic pre-images v;, i =
1,2, respectively, on the sphere S in R*. Assume that the curves c¢| and
3 have the same invariants 8; = R;(0), T; = %;(0), i = 1,2, defined by
(8) for any o € 1. Then there exists a transformation F € My such that
¢y =F(c).

Proof. Since R = K, and T| =T, then the spherical stereographic pre-
images Y, and 95 of the curves c; and c,, respectively, via the stereo-
graphic projection 7, have the same spherical curvatures and torsions.
Therefore, there exists a rotation p € SO(4) such that 95 = p (71 ). Hence,
c;=n(c;)=mop(n)=mopon'(cy), where F =mwopon' € My
and the proof is completed. 0

Theorem 4.3 (Existence theorem). Let f:1 =R, f>0and g:1— R be
given C*—functions, defined on the same interval I C R. Let ¢y € R3 and
e(l), eg, eg be a right-handed orthonormal frame at ¢y in the Euclidean
space R3. There exists a unique Frenet space curve ¢ : I — R which
satisfies the conditions:

(a) there exists oy € I, such that ¢(0y) = cg, and the Frenet frame
of cat ¢y is e?, eg, eg;

(b) for any o € I K(0) = f*(0) and T(0) = g(0o).

Proof. Letly=n""(co) andto=m;"'(e)), no=7"(e9), b =7 (€I).
Let us consider a matrix-valued function

&(o) = (I(o),t(c),n(c),b(c))" . Solving the system of first order lin-
ear differential equations
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0 1 0 O
d _
Réa = 4/ (0)&, with a given matrix 01 _Of {; 2 and ini-
0 0 —g O

tial conditions Iy, to, ng, by we obtain a unique solution & = &(0),
determined for all o € I and &(0y) = (lo,to,no,bo)T for some oy € 1.
It is routine to prove that the matrix & is orthogonal. This means that
the vectors I(o), t(c), n(o), b(c) form an orthogonal frame in R* for
any o € . Let ¥ be a spherical curve, defined by the vector function
l =1(o) and let ¢ = (). It is clear that the conditions (a) and (b) in
the statement of the theorem are fulfilled for the space curve c. O

The proof of the last theorem give us an algorithm of recovering
space curves up to a transformation from the group M.

Algorithm. Recovering space curves by two functions f = f(c) >0
and g = g(o) forany o € 1.

1. Choose initial conditions: cy, e(l), eg, eg;
2. Find the vectors lo =11 (cp), to = ;' (€Y), no = ;' (€9),

by =7, ' (e9):

d
3. Solve the differential equation —& = </ (0)&,

do
0 1 0 O
where _0] j) ¥ g 0 , and initial conditions, determined
0 0 —g O

in Step 1., for &(0p) = (lo,to,no,bo)T;

4. The curves vy, with vector function Il = 1(0), and ¢ = w(y) are
found.
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The next two examples illustrate the considered conformal invari-
ants of a space curve in R3. For the calculations and visualizations we
use the computer system Mathematica.

Example 4.4. Let
c:u(o)= {cos (ﬁtan (%)) ,sin <\6tan (%)) V2tan (%) }

be a helix in R3, parameterized by an arc-length parameter & of its
1
spherical stereographic pre-image. Then R(6) = —————< and T(0) =
4cos* (%)
coso
1+coso’

Example 4.5. Let f(0) = 02,%(0) =0.60, ¢y = (0,0,0), €? = (0,0, 1),
e = (0,1,0). Then, applying the algorithm above, where f(0) = o, and
g(0) =0.60, we obtain the Frenet space curve, depicted in Fig. 1.

Fig. 1: &(0) = 02, T(0) =0.60
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