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RECOVERING SPACE CURVES BY MÖBIUS INVARIANTS∗

RADOSTINA P. ENCHEVA

ABSTRACT: One subgroup of the Möbius group in the Euclidean 3-
space R3 is induced by the group of rotations on the unit 3-sphere in the Eu-
clidean 4-space R4 via a stereographic projection. We find two functions as
Möbius invariants and they determine a Frenet space curve up to a transfor-
mation of considered group. We use these invariants to construct space curves
and for that purpose we apply an algorithm in the computer system Mathemat-
ica.
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1 Introduction

The three dimensional unit sphere S3, centered at the origin O and
embedded in the four-dimensional Euclidean space R4, is mapped via
the stereographic projection π with a center at a point P ∈ S3 onto an
equatorial hyperplane ξ ⊂R4 through the origin O with a normal vector−→
OP. We consider the hyperplane ξ as a three-dimensional Euclidean
space R3. The group of rigid motion on the sphere S3 coincides with the
group of rotations SO(4) in R4 about the origin O. This group induces
in R3 via the stereographic projection π a subgroup M0 of the Möbius
group Möb(3) in R3. For that group it is naturally to apply the algebra of
quaternions H, where H0 ⊂ H is the set of pure quaternions (with zero
real parts). If w ∈ H is a quaternion then the norm of w is denoted by
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‖w‖, the quaternion w ∈H is the conjugate quaternion of w and ‖w‖2 =
w.w = w.w. The transformations from the group M0 can be represented
by the quaternion formalism

F(q) = (A.q+B).(B.q+A)−1,

where A,B∈H, q∈H0, ‖A‖2+‖B‖2 = 1 and A.B+B.A= 0, identifying
H0 with R3 (Theorem 3 in [2]).

It is well-known that the Euclidean curvature κ and the Euclidean
torsion τ determine the space curves up to orientation preserving mo-
tions in R3. This fundamental theorem in the classical curve theory is
extended to the orientation preserving similarity group in [1]. Recov-
ering a space curve by a pair of real functions up to an orientation pre-
serving motion or a similarity transformation is based on the mentioned
theorems. The Euclidean geometry of curves on S3 ⊂ R4 is carried nat-
urally on R3 by the stereographic projection π and it can be interpreted
with respect to the subgroup M0 ⊂Möb(3) in R3. The differential geom-
etry of curves with respect to the Möbius group is developed by Udo
Hertrich-Jeromin in [7]. In the presented paper it is used a different
approach. Relations between the Euclidean differential-geometric in-
variants of curves on the sphere S3 and the corresponding curves in R3

via the stereographic projection π are found.These relations determine
invariants of curves with respect to the group M0. They have an essen-
tial roll of recovering the curves in R3 up to transformations from the
considered group. The case of plane curves, recovering by one Möbuis
invariant, is explored in [3] and [4].

2 Preliminaries

Let K = O~e1~e2~e3~e4 be a right-handed Cartesian coordinate sys-
tem in R4. For any two vectors x= (x1,x2,x3,x4) and y= (y1,y2,y3,y4)
in R4 the canonical inner product < x,y > is defined by < x,y >=

∑
4
i=1 xiyi. We denote the norm of the vector x by ‖x‖ = √< x,x>.

The inner product and the norm of vectors in R3 are determined in a
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similar way.
Let S3 = {(x1,x2,x3,x4) ∈ R4|(x1)2 +(x2)2 +(x3)2 +(x4)2 = 1}

be the unit sphere in R4, centered at the origin O, and let
l = (x1,x2,x3,x4), x1 6= 1 be the position vector of an arbitrary point
on S3, different from the pole P(1,0,0,0). Denoting by (u1,u2,u3) the
coordinates of any position vector u of an arbitrary point in the equato-
rial hyperplane ξ ≡ R3 with respect to the Cartesian coordinate system
K′ = O~e′1~e

′
2~e
′
3 in R3, where~e′1 =~e2, ~e′2 =~e3, ~e′3 =~e4, the stereographic

map π : S3\{P}→ R3 is given by the equalities ui =
xi+1

1− x1 , i = 1,2,3.

For the reverse map π−1 we have the equalities

x1 =
(u1)2 +(u2)2 +(u3)2−1
(u1)2 +(u2)2 +(u3)2 +1

,

xi =
2ui−1

(u1)2 +(u2)2 +(u3)2 +1
, i = 2,3,4.

Making the infinity ∞ correspond to the pole P, the stereographic pro-
jection π and the reverse map π−1 are bijective conformal maps.
We consider the parametric equations of the sphere S3 in the form

l(u1,u2,u3) =

{
‖u‖2−1
‖u‖2 +1

,
2u1

‖u‖2 +1
,

2u2

‖u‖2 +1
,

2u3

‖u‖2 +1

}
.

The standard orthogonal tangential frame field
{

∂ l

∂u1 ,
∂ l

∂u2 ,
∂ l

∂u3

}
at any

point of the sphere S3, except the point P, is given by

l1 =
∂ l

∂u1 = µ.

{
u1,

1− (u1)2 +(u2)2 +(u3)2

2
,−u1u2,−u1u3

}

l2 =
∂ l

∂u2 = µ.

{
u2,−u1u2,

1+(u1)2− (u2)2 +(u3)2

2
,−u2u3

}
l3 =

∂ l

∂u3 = µ.

{
u3,−u1u3,−u2u3,

1+(u1)2 +(u2)2− (u3)2

2

}
,
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where µ =
4

(1+‖u‖2)2 and l2
1 = l2

2 = l2
3 = µ.

A regular space curve in R3 with a nowhere vanishing Euclidean cur-
vature is called a Frenet space curve. For a given Frenet space curve
c : u(s) = (u1(s),u2(s),u3(s)) in R3, parameterized by an arc-length pa-
rameter s, we denote by ”′” the differentiation with respect to s. Apply-
ing the Frenet equations for the derivatives (see [5]), it is easy to prove
the equalities

< u′,u′′′ >=−< u′′,u′′ >=−κ2,

(1)

< u′′,u′′′ >=

(
u′′2

2

)′
= κκ′, < u′×u′′′,u′′ >=−κ2

τ,

where κ and τ are the Euclidean curvature and the Euclidean torsion of
c, respectively.

Lemma 2.1. Let v = v(s) be a vector function in R3 with coordinate
functions vk(s) = ∑

3
i, j=1 Γk

i ju
i′u j ′, k = 1,2,3, where Γk

i j are the Christof-
fel symbols for the sphere S3 and ui = ui(s), i= 1,2,3 are the coordinate
functions of the unit speed curve c : u= u(s). Then

v =
√

µ.u−µ.

(
1
µ

)′
.u′

and

< v,u′′′ >= κ2
µ

(
1
µ

)′
−
√

µ

√µ + µ2

4

(
1
µ

)′2
− µ

2

(
1
µ

)′′
√

µ


′

,

v2 = µu2, <v,u′>=−µ

2

(
1
µ

)′
,<u′×u′′′,v>=

√
µ <u×u′,u′′>′,
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< v,u′′ > = −
√

µ− µ2

4

(
1
µ

)′2
+

µ

2

(
1
µ

)′′
,

< u′×u′′,v > = µ < u×u′,u′′ > .

Proof. The Christoffel symbols Γk
i j for the sphere S3 are given by

(2) Γ
k
i j = Γ

k
ji =


−√µ.u j, k = i;
√

µ.uk, k 6= i = j;
0, k 6= i 6= j.

Hence,

3

∑
i, j=1

Γ
1
i ju

i′u j ′ = Γ
1
11(u

1′)2 +2Γ
1
12u1′u2′+2Γ

1
13u1′u3′+Γ

1
22(u

2′)2+

+Γ
1
33(u

3′)2 =−
√

µu1(u1′)2−2
√

µu2u1′u2′−2
√

µu3u1′u3′+

+
√

µu1(u2′)2 +
√

µu1(u3′)2 =−2
√

µu1′(u1u1′+u2u2′+u3u3′)+

+
√

µu1((u1′)2 +(u2′)2 +(u3′)2︸ ︷︷ ︸
=1

) =−
√

µ(u2)′u1′+
√

µu1.

Similarly, ∑
3
i, j=1 Γ2

i ju
i′u j ′=−√µ(u2)′u2′+

√
µu2 and ∑

3
i, j=1 Γ3

i ju
i′u j ′=

−√µ(u2)′u3′+
√

µu3. Since (u2)′= ‖u‖2′=

(
2
√

µ
−1
)′

=
√

µ

(
1
µ

)′
,

we get the expression of the vector function v. The next scalar products
in the statement of the lemma are obtained by (1) and

< u,u′ >=

√
µ

2

(
1
µ

)′
after the necessary differentiations.

The proofs of the next lemmas are routine, replacing the Christoffel
symbols by (2).
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Lemma 2.2. Let w =w(s) be a vector function in R3 with coordinate
functions wk(s)=∑

3
i, j=1 Γk

i ju
i′u j ′′, k = 1,2,3, where Γk

i j are the Christof-
fel symbols for the sphere S3 and ui = ui(s), i= 1,2,3 are the coordinate
functions of the unit speed curve c : u= u(s). Then

w =−µ

2

(
1
µ

)′
.u′′+

1
4

(
4
√

µ +µ
2
(

1
µ

)′2
−2µ

(
1
µ

)′′)
.u′

and

<w,u′′ >=−µ

2

(
1
µ

)′
κ2, <w,v >= 0,

<w,u′ >=−< v,u′′ >=
√

µ +
µ2

4

(
1
µ

)′2
− µ

2

(
1
µ

)′′
.

Lemma 2.3. Let η = η(s) be a vector function in R3 with coordinate
functions ηk(s) = ∑

3
i, j=1 Γk

i ju
i′(u′×u′′) j, k = 1,2,3, where Γk

i j are the
Christoffel symbols for the sphere S3, ui = ui(s), i = 1,2,3 are the coor-
dinate functions of the unit speed curve c : u= u(s) and (u′×u′′) j, j =
1,2,3 are the coordinate functions of the vector product u′×u′′ in R3.
Then

η =−µ

2

(
1
µ

)′
.(u′×u′′)−

√
µ < u×u′,u′′ > .u′.

and

< η ,u′′ >=< η ,v >= 0,

< η ,u′ >=−< u′×u′′,v >=−
√

µ < u×u′,u′′ > .

Let c be a Frenet space curve in R3. We denote by γ the stereo-
graphic pre-image of c on the sphere S3, i.e. π(γ) = c. Let l= l(σ), σ ∈
J be the vector parametric equation of γ, parameterized by an arc-length
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parameter σ . We have that l2 = 1, l′2 = 1 and < l, l′ >= 0, < l, l′′ >=
−1, < l, l′′′ >= 0. The vector field l+ l′′ is orthogonal to l and (l+
l′′)2 = l′′2−1 = 0. A curve γ is said to be regular if (l+ l′′)2 = l′′2−1 >
0 for every σ ∈ J. A moving frame ltnb at any point of a regular curve γ

on S3 is introduced as follows: t= l′, n=
l+ l′′

‖l+ l′′‖
and b is the unique

vector, determined by the condition ltnb to be a right-handed orthonor-
mal frame. The function κ̃ = ‖l+ l′′‖=

√
l′′2−1 > 0 is called a spher-

ical curvature of γ. The vector field

n′+ κ̃t=− κ̃′

κ̃2 (l+ l′′)+
1+ κ̃2

κ̃
l′+

1
κ̃
l′′′

has the direction of the vector b. So, we can put n′+ κ̃t = τ̃b. The
function τ̃ is called a spherical torsion of γ. For the moving frame ltnb
we obtain the following Frenet type formulas

l′ = t, t′ =−l+ κ̃n, n′ =−κ̃t+ τ̃b, b′ =−τ̃n.

If we denote by ∇t the covariant differentiation along the curve γ on S3

then ∇tt= κ̃n, ∇tn=−κ̃t+ τ̃b and ∇tb=−τ̃n. Hence, κ̃ = ‖∇tt‖
and τ̃ =−< ∇tb,n> (see [6]).

3 Main theorem

The fundamental theorem in the space curve theory states that
the Euclidean curvature κ and the Euclidean torsion τ determine the
space curve, parameterized by an arc-length parameter, up to a rigid
motion in R3. Also, the spherical curvature κ̃ and the spherical torsion
τ̃ define the curve, lying on the sphere S3 ⊂ R4, up to a rotation, pre-
serving the sphere S3. Relations between the invariants κ,τ, κ̃, τ̃ of the
corresponding curves via the stereographic projection π will define any
Frenet space curve up to transformation of the group M0.

Theorem 3.1. Let c be a Frenet space curve in R3, parameterized by
an arc-length parameter s, and let γ be its stereographic pre-image on
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the sphere S3, i.e. π(γ) = c. If κ = κ(s) and τ = τ(s) are the Euclidean
curvature and the Euclidean torsion of the curve c and κ̃ = κ̃(s) and
τ̃ = τ̃(s) are the spherical curvature and the spherical torsion of the
curve γ then

(3) κ̃2 =
1
µ
κ2−1− 3µ

4

(
1
µ

)′2
+

(
1
µ

)′′

(4) τ̃ =
cosθ

µκ̃
κτ− sinθ

µκ̃
κ′,

where

(5) cosθ =
1

√
µκκ̃

(
κ2− 1

4
µ

2
(

1
µ

)′2
+

1
2

µ

(
1
µ

)′′
−
√

µ

)
.

Proof. Let l = l(s) be a vector parametric equation of γ and σ = σ(s)
be its arc-length function. If c : u(s) = (u1(s),u2(s),u3(s)) then l̇ =

d l
d s

=
3

∑
i=1

(ui)′li. The form dσ =
√

µds is the linear element of the curve

γ on the sphere S3. Thus, the unit tangent vector field is represented by

t=
1
√

µ
l̇. Applying the covariant differentiation ∇t we obtain that

(6) ∇tt=
3

∑
k=1

(
1
µ
(uk)′′+

1
µ

vk +
1
2

(
1
µ

)′
(uk)′

)
lk,

where vk = vk(s), k = 1,2,3 are the coordinate functions of the vector
function v, defined in Lemma 2.1. Hence, κ̃2 =

= ‖∇tt‖2 =
1
µ
κ2+

1
µ
v2+

µ

4

(
1
µ

)′2
+

2
µ
<u′′,v>+

(
1
µ

)′
< v,u′>
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and replacing with the equalities in Lemma 2.1 we get (3). The stereo-
graphic projection π and the reverse map π−1 are conformal maps and
the differential π−1

∗ of the reverse map π−1 is a similarity transforma-
tion between the corresponding tangent spaces with a coefficient

√
µ .

If T = u′, N =
u′′

κ
, B = T ×N =

u′×u′′

κ
are the Frenet frame vec-

tor field along the curve c then π
−1
∗ (N) =

1
κ

3

∑
i=1

(ui)′′li and π
−1
∗ (B) =

1
κ

3

∑
i=1

(u′×u′′)ili. Vectors π−1
∗ (N) and π−1

∗ (B), lying in the plane, de-

termined by vectors n and b, are orthogonal and let θ =∠(n,π−1
∗ (N)).

Then n=
cosθ
√

µ
π
−1
∗ (N)+

sinθ
√

µ
π
−1
∗ (B). Hence,

cosθ =
1
√

µ
< n,π−1

∗ (N)>=
1

κ̃κ√µ
< ∇tt,

3

∑
i=1

(ui)′′li >

and

sinθ =
1
√

µ
< n,π−1

∗ (B)>=
1

κ̃κ√µ
< ∇tt,

3

∑
i=1

(u′×u′′)ili > .

Using (6) we obtain that cosθ =
1

κ̃κ√µ

(
u′′2+< v,u′′ >

)
=

=
1

κ̃κ√µ

(
κ2+< v,u′′ >

)
, whence applying Lemma 2.1 we get (5).

Also,

(7) sinθ =
1

κ̃κ√µ
< v,u′×u′′ >=

1
κ̃κ

< u×u′,u′′ > .

Observing that π is an orientation preserving map in odd dimension, we

have that b=
−sinθ
√

µ
π
−1
∗ (N)+

cosθ
√

µ
π
−1
∗ (B) =
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= − 1
κ√µ

3

∑
i=1

(
sinθ(ui)′′− cosθ(u′×u′′)i) li. Therefore, using the co-

variant differentiation technique, we get

∇tb=
1
√

µ
∇l̇b=−

1
√

µ

3

∑
k=1

[
1

κ√µ

(
sinθ(wk +(uk)′′′)−

−cosθ(ηk +(u′×u′′′)k)
)
+

(
sinθ

κ√µ

)′
(uk)′′−

(
cosθ

κ√µ

)′
(u′×u′′)k

]
lk.

Thus,

τ̃ =−< ∇tb,n >=− 1
κ̃

< ∇tb,∇tt>=

√
µ

κ̃

[
sinθ

κµ
√

µ
.<w,u′′ >+< u′′′,u′′ >+<w,v >+< u′′′,v >︸ ︷︷ ︸

A

+
sinθ

2κ√µ

(
1
µ

)′
.

<w,u′ >+< u′′′,u′ >︸ ︷︷ ︸
B

− cosθ

κµ
√

µ
.

< η ,u′′ >+< u′×u′′′,u′′ >+< η ,v >+< u′×u′′′,v >︸ ︷︷ ︸
C

−
− cosθ

2κ√µ

(
1
µ

)′
< η ,u′ >︸ ︷︷ ︸

D

+

+
1
µ

(
sinθ

κ√µ

)′κ2+< u′′,v >︸ ︷︷ ︸
E

− 1
µ

(
cosθ

κ√µ

)′
< u′×u′′,v >︸ ︷︷ ︸

F

=
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=
1
κ̃

[
sinθ

κµ
.A+

sinθ

2κ

(
1
µ

)′
.B− cosθ

κµ
.C− cosθ

2κ

(
1
µ

)′
.D+

+
1
√

µ

(
sinθ

κ√µ

)′
.E− 1

√
µ

(
cosθ

κ√µ

)′
.F.
]

Applying the lemmas 2.1, 2.2, 2.3 and taking account of the equali-
ties (1), (5), (7) we have that A = −κκ′+√µ(κκ̃ cosθ)′, −B = E =√

µκκ̃ cosθ ,C =−κ2τ+
√

µ(κκ̃ sinθ)′,−D=F =
√

µκκ̃ sinθ . Re-
placing the found expressions in the equality above we obtain (4) after
simple rearranges and simplifications.

4 Möbius invariants of space curves

It is obvious that the arc-length function σ = σ(s) is an invariant
with respect to the group M0. Let we denote by Sσ (s) the Schwarzian
derivative of the function σ = σ(s). Then we have that

Sσ (s) =
(

σ ′′

σ ′

)′
− 1

2

(
σ ′′

σ ′

)2

=
1
2

[
3
4

µ
2
(

1
µ

)′2
−µ

(
1
µ

)′′]
.

If s = s(σ) is the reverse function of σ then we get 0 = Sσ◦s(σ) =

Sσ (s)
( ds

dσ

)2
+Ss(σ)⇒ Sσ (s)=−µSs(σ) applying the chain rule for the

Schwarzian derivatives. The functions κ̃ and τ̃ from Theorem 3.1 can be
expressed in terms of the arc-length parameter σ . We set K(σ)= κ̃2(σ),
T(σ) = τ̃(σ) and we obtain that

K(σ) =
1
µ
κ2−1+2Ss(σ)(8)

T(σ) =
1

µ
√
K

(
κτ cosθ −

√
µ

dκ
dσ

sinθ

)
,

where cosθ =
1

κ
√

µK

(
κ2 +µSs(σ)+

1
8µ

(
dµ

dσ

)2

−
√

µ

)
.
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Corollary 4.1. The functions K = K(σ) and T = T(σ), define by (8),
are invariants under the group M0.

Proof. The proof is omitted.

Theorem 4.2 (Uniqueness theorem). Let I ⊂R be an open interval and
let ci : I→R3, i = 1,2 be two Frenet space curves, parameterized by the
same arc-length parameter σ of their stereographic pre-images γi, i =
1,2, respectively, on the sphere S3 in R4. Assume that the curves c1 and
c2 have the same invariants Ki =Ki(σ), Ti =Ti(σ), i = 1,2, defined by
(8) for any σ ∈ I. Then there exists a transformation F ∈M0 such that
c2 = F(c1).

Proof. Since K1 =K2 and T1 =T2 then the spherical stereographic pre-
images γ1 and γ2 of the curves c1 and c2, respectively, via the stereo-
graphic projection π, have the same spherical curvatures and torsions.
Therefore, there exists a rotation ρ ∈ SO(4) such that γ2 = ρ(γ1). Hence,
c2 = π(c1) = π ◦ρ(γ1) = π ◦ρ ◦π−1(c1), where F = π ◦ρ ◦π−1 ∈M0
and the proof is completed.

Theorem 4.3 (Existence theorem). Let f : I→R, f > 0 and g : I→R be
given C∞−functions, defined on the same interval I⊂R. Let c0 ∈R3 and
e0

1, e
0
2, e

0
3 be a right-handed orthonormal frame at c0 in the Euclidean

space R3. There exists a unique Frenet space curve c : I → R3 which
satisfies the conditions:

(a) there exists σ0 ∈ I, such that c(σ0) = c0, and the Frenet frame
of c at c0 is e0

1, e
0
2, e

0
3;

(b) for any σ ∈ I K(σ) = f 2(σ) and T(σ) = g(σ).

Proof. Let l0 = π−1(c0) and t0 = π−1
∗ (e0

1),n0 = π−1
∗ (e0

2), b0 = π−1
∗ (e0

3).
Let us consider a matrix-valued function
E (σ)= (l(σ),t(σ),n(σ),b(σ))T . Solving the system of first order lin-
ear differential equations
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d
d σ

E = A (σ)E , with a given matrix


0 1 0 0
−1 0 f 0
0 − f 0 g
0 0 −g 0

 and ini-

tial conditions l0, t0, n0, b0 we obtain a unique solution E = E (σ),
determined for all σ ∈ I and E (σ0) = (l0,t0,n0,b0)

T for some σ0 ∈ I.
It is routine to prove that the matrix E is orthogonal. This means that
the vectors l(σ), t(σ), n(σ), b(σ) form an orthogonal frame in R4 for
any σ ∈ I. Let γ be a spherical curve, defined by the vector function
l = l(σ) and let c = π(γ). It is clear that the conditions (a) and (b) in
the statement of the theorem are fulfilled for the space curve c.

The proof of the last theorem give us an algorithm of recovering
space curves up to a transformation from the group M0.

Algorithm. Recovering space curves by two functions f = f (σ) > 0
and g = g(σ) for any σ ∈ I.

1. Choose initial conditions: c0, e
0
1, e

0
2, e

0
3;

2. Find the vectors l0 = π−1(c0), t0 = π−1
∗ (e0

1), n0 = π−1
∗ (e0

2),
b0 = π−1

∗ (e0
3);

3. Solve the differential equation
d

d σ
E = A (σ)E ,

where


0 1 0 0
−1 0 f 0
0 − f 0 g
0 0 −g 0

 , and initial conditions, determined

in Step 1., for E (σ0) = (l0,t0,n0,b0)
T ;

4. The curves γ, with vector function l = l(σ), and c = π(γ) are
found.
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The next two examples illustrate the considered conformal invari-
ants of a space curve in R3. For the calculations and visualizations we
use the computer system Mathematica.

Example 4.4. Let

c : u(σ) =
{

cos
(√

2tan
(

σ

2

))
,sin

(√
2tan

(
σ

2

))
,
√

2tan
(

σ

2

)}
be a helix in R3, parameterized by an arc-length parameter σ of its

spherical stereographic pre-image. Then K(σ)=
1

4cos4
(

σ

2

) and T(σ)=

cosσ

1+ cosσ
.

Example 4.5. Let K(σ)=σ2,T(σ)= 0.6σ , c0 =(0,0,0), e0
1 =(0,0,1),

e0
2 =(0,1,0). Then, applying the algorithm above, where f (σ)=σ , and

g(σ) = 0.6σ , we obtain the Frenet space curve, depicted in Fig.1.

Fig. 1: K(σ) = σ2, T(σ) = 0.6σ
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