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PROJECTION METHOD FOR SOLVING EIGENVALUE PROBLEM*
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ABSTRACT: In this work we present a new method for solving the eigenvalue problem of a
companion matrix. We show that the introduced method is equivalent to the Inverse Weierstrass iterative
method for simultaneous extraction of all polynomial roots. Based on this dependence, we get some new
theoretical properties for the Inverse Weierstrass method.
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1 Introduction

We consider the particular eigenvalue problem: find a scalar A € C and a non-zero vector
x € C" such that

(1) Ax = AX,

where A is the following (inverse) companion matrix of order n with complex entries and with only
simple, and non-zero eigenvalues

_4a _a o1 _ 1
ap ap ao a0
1 0o ... 0 0
(2) A=\ ... ... ... . .. | where a#0.
0 0 0 0
0 0 1 0
Let us denote by /%1, %2, ey % the two by two distinct and non-zero eigenvalues of A. Then

it is immediate to verify that the eigenvector associated with /% has the form
S

Xy = (1, A5, A2, ..., AP DT,

for s = 1,...,n. Therefore the eigenvector matrix V of A is the well-known Vandermonde matrix
1 1 . 1
M A ... A
3) V=V(A)= "

Al’l_l l;_l s A
Thus we have the following eigenvalue decomposition of (2)
4) A=VAV!

where A = diag{%l,...,li}.
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2  Projection methods for eigenvalue problems

In this section we give a short introduction to the Projection methods for solving the eigen-
value problem. Given two m—dimensional subspaces .#” and .Z of C”, the basic idea of projection
methods is to approximate the exact eigenpair (A,x) to the eigenvalue problem (1), by an approx-
imate eigenpair (i,f{), with 4 € C and & € ¢, such that the following Petrov-Galerkin condition
is satisfied

(5) AR— A% L ¥

for some given inner product. The subspace %" reffered to as the subspace of approximants or the
right subspace and .Z as the left subspace.

There are two main classes of projection methods: orthogonal projection (Ritz-Galerkin) and
oblique projection methods (see for more details [1, 2, 4, 5]). In the case of orthogonal projection
methods the subspace %" is the same as .Z, while in oblique projection techniques subspace %" is
different from .Z.

We can translate in matrix form the approximate eigenvector X in some basis and express the

Petrov-Galerkin condition. Let assume that we have a basis {vy,..., v, } of # and denote by V the
matrix with column vectors vy,...,v,. By analogy, let {wy,...,w,} be a basis of .Z and denote
by W the matrix with column vectors wy, ..., w,,. Usually, the following additional assumption is
required

(6) WV =1,

which means that the two bases are biorthogonal, i.e. (v;,w;) = ;;. Now we can translate the
approximate problem into this basis and solve it numerically. Letting

x=Vu
the condition (5) becomes
(A=ADVu,w)) =0, j=1,....m.

Therefore, u and A must satisfy

(7 B,u = Au,
where
3) B,, = W*AV.

In this way, we reduced the initial eigenvalue problem to the smaller m X m eigenvalue problem.
Each eigenvalue A of B, is called a Ritz value, and Vu is called Ritz vector, where u is the eigen-
vector of B,,, associated with 1.

In the case of orthogonal projection methods the matrix B,, has the form B,, = V*AV. In this
case, the method for solving the reduced eigenvalue problem (7) is also known as the Rayleigh-Ritz
procedure.

We can also reformulate projection methods in terms of projection operators as follows.
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Case 1. Orthogonal projection methods. Let P be the orthogonal projector onto %, then
condition (5) has the form

9) AR— AR L7

or equivalently,

or
(10) PyAR = AR.

Hence, we have replaced the initial problem (1) by an eigenvalue problem for the linear transfor-
mation Py A which is from " to Z". The last equation is equivalent to

(11) PyAPyR =A%, (A€ C,Re.X),
which involves the operator
(12) Ay =PyAPy.

This is an extension of Pz A| ; to the whole space. Equation (10) will be referred to as the Galerkin
approximation problem.

Case 2. Oblique projection methods. Let Qf; be the oblique projector onto .#” and orthog-
onal to .. This projector has the following properties:

(13) Q%zex and (I-Q%)z L 2.

for any vector z € C". Then the orthogonality condition (5) is equivalent to

or
(14) Q7 A% = AX.

Thus, the eigenvalue problem for matrix A is replaced by the eigenvalue problem of the linear
operator Qj/?;A‘ - In this case, we can define an extension A, by analogy to the definition of (12)
in two different ways. One possible presentation could be

(15) An=Q2AQ%
or, the more useful extension

(16) An=Q%APy.
Then by analogy to (11) we get the approximation problem

(17) Ak =A%, (AeC,reX).
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Therefore in both cases (11) and (17), the Ritz values are actually the eigenvalues of the operator
A, and the Ritz vectors are the corresponding eigenvectors belonging to 7.

There are different ways to construct the subspaces % and .Z". We can work with subspaces
of both fixed and variable dimensions. Some of the well-known examples when the subspace
dimension is fixed to one are the Power method and Rayleigh quotient iteration (see [2, 9]). In
other projection methods the dimension of the subspace .#” is increasing, usually one starts with a
subspace of dimension one, and the dimension increases by one at each iteration step. Some of the
most popular methods of this type use the so-called Krylov subspace. Such examples are Arnoldi
method, Lanczos method and incomplete orthogonalization (see [1, 3]). Methods like Davidson
and Jacobi-Davidson method are with increasing subspace dimension and without using Krylov
subspaces (see [6, 7]).

3 A new iterative scheme for diagonalization of matrix (2)

We introduce the following new iterative scheme for finding all the eigenvalues and corre-
sponding left, and right eigenvectors of the inverse companion matrix (2).

Algorithm-1: Diagonalization of the inverse companion matrix

Input: A, initial vector z(¥)(where zgo) =+ zg-o) for i # j), tolerance € < 1.
Output: Approximate eigenvalues and eigenvector matrices:

A= (/%1, e /an)’ V(A),W(A).

1: Set k=0.

2: While not converged do

3: Compute the Vandermonde matrix Vj = V(z(k)).

4: Compute the inverse Vandermonde matrix W, = V(z(k))’l.

5: For i=1:n do

6: Compute next eigenvalue estimate

4 = p = (wyravl,
where ng) is the i-th column vector of Vg,
and (wgk))* is the i-h row vector of W}
7: End for
8: Set k=k+1.

8: If |25+ — 2|, < & then

9: SetA=z*D V=V, W=w.
10: break

11: End If

12: End While

Where zl(k) is the k-th approximation of the eigenvalue /ll (i=1,...,n). The right and left
approximate eigenvectors associated with eigenvalue )Li are denoted by ng) and wl(k), respectively.
On step 6 of Algorithm-1, the two-sided Rayleigh quotient

y*AX

y*x

is used for computing the approximate eigenvalue. Formula (18) is introduced for the first time by
Ostrowski in [8] (see also [9, 10]).

(18) p(x,y) =p(A,x,y) =
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We will show that the presented Algorithm-1 can be formulated in terms of projection meth-
ods. Without loss of generality we fix the value of index i on step 6 of Algorithm-1. Let denote

by

(19) S = span{vl(k)}
the right subspace and by

0) %= span{(w,")"}

the left subspace associated with - 7 at iteration step k. It is obvious that the biorthogonality con-
dition (6) is valid. Then the correspondmg reduced eigenvalue problem (7)-(8) of (1) has the
following trivial form

(W) aviy = Ay,

where the matrix By, is a scalar (m = 1) and it is identical to the Rayleigh quotient (18). In other
words, we unambiguously obtain the Ritz value

o= o) o, W),

which is the next approximation of /% Furthermore, it is immediate to verify that the residual

1

vector of approximate eigenpair ( /11 ,Vl(k)>

is orthogonal to .}, i.e. the Petrov-Galerkin condition (5) is satisfied. With this, we confirmed that
the approach of Algorithm-1 is an oblique projection method with subspaces .#; and .Z; having
dimensions fixed to one.

4 Equivalence of Inverse Weierstrass method and introduced Algorithm-1

In this section we use the same notations as in the previous two sections. Let P(z) be a monic
polynomial of degree n > 2

21) P(z):z”+an,1z”_1+...+alz—|—a0,

where ag # 0 and with n distinct zeros. Let A1, A,, ..., 4, be pairwise distinct roots of P(z).
In our previous work [11] we suggested the Inverse Weierstrass iterative method defined by
the sequence

(22) 25 = (20 k=0,1,2,...

where ¢ : 2 C C" — C" is a vector valued function with components

(23) ¢;(z%)) =

. (i=1,...,n)
B P(ng)) . z(ik) ’ ) ’

ao J#l ’< (k)
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and ¥ is the set of all vectors in C" with distinct components.
In [11] it is also shown that the entries of the matrix

(24) H(z) =V~ (2)AV (z),

where z = (z1,...,2,) and the matrices A and V(z) are defined by (2) and (3), respectively, have
the form

P %

a 1 i P i 1 L /
(25) H; = 0 “UASTE and Hyp = — ST o Y G j=1,....n).

Let now consider again Algorithm-1, step 6. The two-sided Rayleigh quotient computed on
this step is exactly the diagonal element H;; of (24), which approximates the ratio - .- From this and
from expression (22) we conclude that the Inverse Weierstrass method is equlvalent to introduced
Algorithm-1.

5 Convergence analysis

Our main purpose in this section is to apply some of the known convergence results on
Projection methods to the considered Algorithm-1.

Let now consider Algorithm-1 for the fixed value of the index i. The orthogonal projector
Py onto %; defined by (19) has the form

(26) Py = N

and the oblique projector Q‘f@ onto .%; along the orthogonal complement of .Z; defined by (20) has
the form
Z k), (k

(27) Q%ZV,( Jwiyr.
If we consider the exact eigenpair (A;,X;) as an approximate eigenpair of the operator A,,, then the
following estimates hold for the corresponding residual vector. For the sake of simplicity, we omit
the superscript (k).

To investigate the distance between the Ritz value and the exact eigenvalue we can use the
following theorem.

Theorem 1. Let A be diagonalizable with eigenvalue decomposition (4)

A=VAVL

where A = diag{ %1, S } Let ( x,) be an approximate eigenpair of A computed by Algorithm-
1 with the corresponding residual vector

1
= — =1 .ffi, izl,...,n .
(13t} =t

Then there exists an eigenvalue A; of A such that

I 1

(28) PRy

<kWV)|rillz,
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where k(V) = ||V ||2||[V "2 denotes the condition number of V.
Proof: The result is obvious if A; = A;. Let assume that A; # A;, then the matrix A — -1 is

Ai
-1 -1
(A—All) v<A—ll> vl
i Ai
—1 —1
(A—il) r; V(A—il) vl
)«i A«i

Rearranging the terms we get the result of the theorem.

A similar approach to Theorem 1 for studying the convergence of Ritz values is the next
theorem, where both left and right residuals are used. This is the two-sided analogous of the
known Bauer-Fike theorem (see [1, 10]).

Theorem 2. Let we have the eigenvalue decomposition (4) of A

A=VAV !,

nonsingular and we have

which implies

[rill2

1< IIﬁin:‘

SKV) 11
’ mlnj’rj——

2 ii

where A = diag{/%l,...,i}. Let (il,-’ﬁi’ﬁ» be an approximate eigentriplet of A computed by
Algorithm-1 with the corresponding residual vectors

1 1
ri:( —A—1>5‘\3i ands;-k:j);k(A—,\—I),(i:1,...,l/l)-
;Ll' )vi

Then there exists an eigenvalue /% of A such that

1 1
= VEW)rill2lsillz

(29)

Ai

where k(V') denotes the condition number of V.
Proof: If Al is an eigenvalue of A the result is obvious. Let suppose the opposite. Then the

matrix A — %I is nonsingular and we have
i

1 72
S; (A - i_l> r
i

by using that the matrix (A — %I ) is diagonal

1 72
1=|yi%| = stV (A— A—1> Voly
Ai

)
(A — ,\ll)
Ai

< k(V)lsill2llrill2

Y

2
which implies by rearranging the terms
1 1
min < VEkV)|Isill2||r
oy VEWV)lIsill2eill2-

From the last expression, we get the result of the theorem.

It is important to remark that the estimates obtained in Theorem 1 and Theorem 2 depend on
the quantity k(V) which is not known, and so these are a priori results. Such estimates are of great
value in assessing the relative performance of algorithms.
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6

Conclusion

Our goal in this study was to introduce a new iterative method for diagonalization of the

inverse companion matrix. We have shown that this method can be considered as an oblique pro-
jection method. Using this we proved some analogs of known results from the theory of projection
methods. We established an a posterior error bound and error bounds by using the residuals. We
also show that the new iterative scheme is equivalent to the known Inverse Weierstrass iterative
method for simultaneous approximations of all the zeros of a polynomial.
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