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INVARIANT THEORY AND ITS APPLICATIONS

Ivo M. Michailov∗

’As all the roads lead to Rome so I find in my own case at least that all algebraic
inquiries, sooner or later, end at the Capitol of modern algebra over whose shining portal
is inscribed the Theory Of Invariants.’ (Sylvester (1864, p. 380))
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1 Historical background
Invariant theory is concerned with expressions that remain constant (invariant) under a group
of transformations. As an everyday example, if a rigid yardstick is rotated, the coordinates
(x, y, z) of its endpoints change, but its length L given by the formula L2 = ∆x2 + ∆y2 + ∆z2

remains the same. The roots of invariant theory can be traced back in the research of Lagrange
(1773) and Gauss (in his Disquisitiones Arithmeticae from 1801), who are interested in the
representation of numbers by binary quadratic forms. They also used the discriminant for
distinguishing between non equivalent forms.

In the first decades of invariant theory (1840-1870), people were mainly concerned with
the discovery of particular invariants. The major case of interest was that of forms of degree d
in n variables with SLn(C) acting by linear substitution. Invariant theory was an active area of
research in the later nineteenth century, prompted in part by Felix Klein’s Erlangen program,
according to which different types of geometry should be characterized by their invariants
under transformations, e.g., the cross-ratio of projective geometry. For example, the geometric
significance of the discriminant is that a quadratic binary form defines two distinct points on
the projective line P1(C) if and only if its discriminant is non zero. People became interested
in such invariant properties especially after the introduction of homogeneous coordinates by
Moebius (1827) and Plucker (1830). This was a major impetus for invariant theory.

The archetypal example of an invariant is the discriminant B2−4AC of a binary quadratic
form Ax2+Bxy+Cy2. This is called an invariant because it is unchanged by linear substitutions
x 7→ ax + by, y 7→ cx + dy with determinant ad− bc = 1. These substitutions form the special
linear group SL2. One can ask for all polynomials in A,B, and C that are unchanged by the
action of SL2; these are called the invariants of binary quadratic forms, and turn out to be the
polynomials in the discriminant.

One of the main goals of invariant theory was to solve the ”finite basis problem”. The sum
or product of any two invariants is invariant, and the finite basis problem asked whether it was
possible to get all the invariants by starting with a finite list of invariants, called generators,
and then, adding or multiplying the generators together. For example, the discriminant gives
a finite basis (with one element) for the invariants of binary quadratic forms. Paul Gordan
was known as the ”king of invariant theory”, and his chief contribution to mathematics was
his 1870 solution of the finite basis problem for invariants of homogeneous polynomials in two
variables. He proved this by giving a constructive method for finding all of the invariants and
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their generators, but was not able to carry out this constructive approach for invariants in
three or more variables. In 1890, David Hilbert proved a similar statement for the invariants
of homogeneous polynomials in any number of variables. Furthermore, his method worked,
not only for the special linear group, but also for some of its subgroups such as the special
orthogonal group. His first proof caused some controversy because it did not give a method for
constructing the generators, although in later work he made his method constructive. For her
thesis, Emmy Noether extended Gordan’s computational proof to homogeneous polynomials
in three variables. Noether’s constructive approach made it possible to study the relationships
among the invariants.

Noether was brought to Göttingen in 1915 by David Hilbert and Felix Klein, who wanted
her expertise in invariant theory to help them in understanding general relativity, a geometrical
theory of gravitation developed mainly by Albert Einstein. Hilbert had observed that the
conservation of energy seemed to be violated in general relativity, due to the fact that gravitatio-
nal energy could itself gravitate. Noether provided the resolution of this paradox, and a funda-
mental tool of modern theoretical physics, with Noether’s first theorem, which she proved in
1915, but did not publish until 1918. She not only solved the problem for general relativity, but
also determined the conserved quantities for every system of physical laws that possesses some
continuous symmetry.

Upon receiving her work, Einstein wrote to Hilbert: "Yesterday I received from Miss
Noether a very interesting paper on invariants. I’m impressed that such things can be understood
in such a general way. The old guard at Göttingen should take some lessons from Miss Noether!
She seems to know her stuff."

For illustration, if a physical system behaves the same, regardless of how it is oriented
in space, the physical laws that govern it are rotationally symmetric; from this symmetry,
Noether’s theorem shows the angular momentum of the system must be conserved (known as
Kepler’s second law, see Fig. 1).

Figure 1. Kepler’s second law of planetary motion.

Noether’s theorem has become a fundamental tool of modern theoretical physics, both
because of the insight it gives into conservation laws, and also, as a practical calculation tool.
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2 Invariant theory of finite groups
Invariant theory of finite groups has intimate connections with Galois theory. One of the first
major results was the main theorem on the symmetric functions that described the invariants
of the symmetric group Sn acting on the polynomial ring K[x1, . . . , xn] by permutations of the
variables. This theorem appears to have been understood, or at least intuited and used, by
Newton, as early as 1665. By the turn of the nineteenth century it was regarded as well known.
For Galois himself, it was the essential lemma on which his entire theory rested. However, it
was not properly proven or even precisely stated until the nineteenth century.

In the following K will always denote an infinite field. (Usually, in invariant theory it is
assumed that K = C, the field of complex numbers.) Let W be a finite dimensional K-vector
space. A function f : W → K is called polynomial or regular if it is given by a polynomial in
the coordinates with respect to a basis of W . It is easy to see that this is independent of the
choice of a coordinate system ofW . We denote by K[W ] the K-algebra of polynomial functions
on W which is usually called the coordinate ring of W or the ring of regular functions on W . If
w1, . . . , wn is a basis of W and x1, . . . , xn the dual basis of the dual vector space W ∗ of W , i.e.,
the coordinate functions, we have K[W ] = K[x1, . . . , xn]. This is a polynomial ring in the xi
because the field K is infinite. Appart from the common operations addition and multiplication
in a ring,K[W ] is a linear space overK, since we can multiply the polynomials with scalars from
K. Moreover, for any α ∈ K, f, g ∈ K[W ] is satisfied the condition α·(f ·g) = (α·f)·g = f ·(α·g).
Such rings are called algebras.

As usual, we denote by GL(W ) the general linear group, i.e., the group of K-linear
automorphisms of the K-vector space W . Choosing a basis (w1, w2, . . . , wn) of W we can
identify GL(W ) with the group GLn(K) of invertible n × n matrices with entries in K in the
usual way: The i-th column of the matrix A corresponding to the automorphism g ∈ GL(W )
is the coordinate vector of g(wi) with respect to the chosen basis.

Now assume that there is given a subgroup G ⊂ GL(W ) or, more generally, a group G
together with a linear representation on W , i.e., a group homomorphism ρ : G→ GL(W ). The
corresponding linear action of G on W will be denoted by (σ,w) 7→ σw = ρ(σ)w (σ ∈ G,w ∈
W ), and we will call W a G-module.

Definition 2.1. A function f ∈ K[W ] is called G-invariant or shortly invariant if f(σw) =
f(w) for all σ ∈ G and w ∈ W . The invariants form a subalgebra of K[W ] called invariant ring
and denoted by K[W ]G.

There is another way to describe the invariant ring. For this we consider the following
linear action of G on the coordinate ring K[W ]:

(σ, f) 7→ σf, σf(w) = f(σ−1w), for σ ∈ G, f ∈ K[W ], w ∈ W.

This is usually called the regular representation of G on the coordinate ring. (The inverse σ−1

in this definition is necessary in order to get a left-action on the space of functions.) Clearly,
a function f is invariant if and only if it is a fixed point under this action, i.e., σf = f for all
σ ∈ G. This explains the notation K[W ]G for the ring of invariants.

Example 2.1. Consider the special linear group SLn(K), i.e., the sub-group of GLn(K) of
matrices with determinant 1, and its representation on the space Mn(K) of n × n-matrices
by left multiplication: (σ,A) 7→ σA, σ ∈ SLn, A ∈ Mn(K). Clearly, the determinant function
A 7→ detA is invariant. In fact, it can be proved that the invariant ring is generated by the
determinant: K[Mn]SLn = K[det].
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Example 2.2. Let Sn denote the symmetric group on n letters and consider the natural
representation of Sn on W = Kn given by σ(ei) = eσ(i), or, equivalently,

σ(x1, x2, . . . , xn) = (xσ−1(1), xσ−1(2), . . . , , xσ−1(n)).

The symmetric group Sn acts on the polynomial ring K[x1, . . . , xn], and the invariant functions
are the symmetric polynomials:

K[x1, . . . , xn]Sn = {f | f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all σ ∈ Sn}.

It is well known and classical that every symmetric function can be expressed uniquely
as a polynomial in the elementary symmetric functions σ1, σ2, . . . , σn defined by

σ1 = x1 + x2 + · · ·+ xn,

σ2 = x1x2 + x1x3 + · · ·+ xn−1xn,
...

σk =
∑

i1<i2<···<ik

xi1xi2 · · ·xik ,

...
σn = x1x2 . . . xn.

Formally:

Theorem 2.1. (Fundamental Theorem on Symmetric Polynomials) Any symmetric polynomial
in n variables x1, . . . , xn is representable in a unique way as a polynomial in the elementary
symmetric polynomials σ1, σ2, . . . , σn.

The existence part of the latter theorem can be formulated also thus:

Corollary 2.2. The elementary symmetric polynomials σ1, σ2, . . . , σn generate the algebra of
symmetric polynomials:

K[x1, . . . , xn]Sn = K[σ1, σ2, . . . , σn].

One of the fundamental problems in Classical Invariant Theory is the following:

Open Problem. Describe generators and relations for the ring of invariants K[W ]G.

This question goes back to the 19th century and a number of well-known mathematicians
of that time have made important contributions: Boole, Sylvester, Cayley, Hermite, Clebsch,
Gordan, Capelli, Hilbert.

Example 2.3. Consider the group

C2 =

{
±
(

1 0
0 1

)}
< GL2(K) (char K 6= 2).

It is not hard to show that f ∈ K[x1, x2] is invariant under C2 if and only if we can write
f(x1, x2) = g(x2

1, x
2
2, x1x2) for some polynomial g ∈ K[x1, x2]. Therefore K[x1, x2]C2 = K[x2

1, x
2
2,

x1x2].
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More generally:

Example 2.4. Let C2 = {id, σ}, the cyclic group of order 2, act on the n-dimensional K-vector
space W by σ(v) = −v (char K 6= 2). We are going to determine a system of generators for the
ring of invariants K[W ]C2 . Note first that f ∈ K[x1, . . . , xn] is invariant under C2 if and only
if f(x1, . . . , xn) = σf = f(−x1, . . . ,−xn). Hence the invariants are the polynomials that are
sums of monomials of even degree. (Recall that the degree d of the monomial axd11 x

d2
2 · · ·xdnn

is defined as d = d1 + d2 + · · · + dn.) In particular, the monomials x2
1, . . . , x

2
n, xixj (i 6= j) are

invariants. It can be shown that any monomial of even degree is a product of these monomials,
so K[x1, . . . , xn]C2 = K[x2

1, . . . , x
2
n, xixj : i 6= j].

Example 2.5. Consider the group

E4 =

{(
±1 0

0 ±1

)}
< GL2(K) (char K 6= 2).

This is the elementary abelian group of order 4 called sometimes the Klein four group. If a
polynomial f ∈ K[x1, x2] is invariant under E4 then f(x1, x2) = f(−x1, x2) = f(x1,−x2), and
clearly the converse is also true. If f(x1, x2) =

∑
i,j aijx

i
1x

j
2 the condition f(x1, x2) = f(−x1, x2)

is equivalent to aij = 0 for i odd, and the condition f(x1, x2) = f(x1,−x2) is equivalent to
aij = 0 for j odd. Thus we have that f(x1, x2) = g(x2

1, x
2
2) for some polynomial g ∈ K[x1, x2].

Therefore K[x1, x2]E4 = K[x2
1, x

2
2].

We can generalize the latter example:

Example 2.6. Let E2n = 〈σ1, . . . , σn〉, the elementary abelian group of order 2n, act on the
n-dimensional K-vector space W by σi(ej) = (−1)δijej, where δij is the Kronecker’s delta
(δij = 0 if i 6= j and δij = 1 if i = j). Note that f ∈ K[x1, . . . , xn] is invariant under E2n if
and only if f(x1, . . . , xn) = f(−x1, x2, . . . , xn) = f(x1,−x2, . . . , xn) = · · · = f(x1, x2, . . . ,−xn).
As in example 2.5 it is easy to see that f(x1, . . . , xn) = g(x2

1, . . . , x
2
n) for some polynomial

g ∈ K[x1, . . . , xn]. Therefore K[x1, . . . , xn]E2n = K[x2
1, . . . , x

2
n].

3 Some Finiteness Theorems
One of the highlights of the 19th century invariant theory was Gordan’s famous theorem showing
that the invariants of binary forms (under SL2) are finitely generated. His proof is rather
involved and can be roughly described as follows: He gives a general inductive method to
construct all invariants, and then he shows that after a certain number of steps the construction
does not produce any new invariant. Thus, the finite number of invariants constructed so far
form a system of generators. It was already clear at that time that it will be very difficult to
generalize Gordan’s method to other groups than SL2. So it came as a big surprise when Hilbert
presented in 1890 his general finiteness result for invariants, using completely new ideas and
techniques.

Definition 3.1. For a ring R and a subset S ⊆ R, the ideal generated by S is defined as

(S) := {r1s1 + · · ·+ rksk | k ∈ N, r1, . . . , rk ∈ R, s1, . . . , sk ∈ S}.

An ideal I ⊆ R is called finitely generated if there is a finite set S such that I = (S).
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Definition 3.2. A ring R is called Noetherian if every ideal I in R is finitely generated.

We will be mostly interested in polynomial rings over C in finitely many indeterminates,
for which the following theorem is essential.

Theorem 3.1. (Hilbert’s Basis Theorem) The polynomial ring C[x1, . . . , xn] is Noetherian.

With this tool in hand, we can now return to our main theorem of this section.

Theorem 3.2. (Hilbert’s Finiteness Theorem)) Let G be a group and letW be a finite dimensio-
nal G-module with the property that C[W ] is completely reducible. Then C[W ]G = {f ∈ C[W ] |
gf = f, ∀g ∈ G} is a finitely generated subalgebra of C[W ]. That is, there exist f1, . . . , fk ∈
C[W ]G such that every G-invariant polynomial on W , is a polynomial in the fi.

The proof uses the so-called Reynolds operator ρ, which is defined as follows. We assume
that the vector space C[W ] is completely reducible. Consider its isotypic decomposition C[W ] =
⊕i∈IVi and let 1 ∈ I correspond to the trivial 1-dimensional G-module, so that C[W ]G = V1.
Now let ρ be the projection from C[W ] onto V1 along the direct sum of all Vi with i 6= 1. This
is a G-equivariant linear map. Moreover, we claim that

ρ(f · h) = f · ρ(h) for all f ∈ V1,

where the multiplication is multiplication in C[W ]. Indeed, consider the map C[W ]→ C[W ], h 7→
fh. This a G-module morphism, since g(f · h) = (gf) · (gh) = f · (gh), where the first equality
reflects that G acts by automorphisms on C[W ] and the second equality follows from the
invariance of f . Hence if we write h as

∑
i hi with hi ∈ Vi, then fhi ∈ Vi by Schur’s lemma, and

therefore the component of fh =
∑

i(fhi) in V1 is just fh1. In other words ρ(f · h) = f · ρ(h),
as claimed.

Exercise 1. Show that for a finite group G, the Reynolds operator is just f 7→ 1
|G|
∑

g∈G gf .

Proof of Hilbert’s finiteness theorem. Let I ′ = ⊕d>0C[W ]Gd be the ideal in C[W ]G consisting of
all invariants with zero constant term. Denote by I = C[W ]I ′ the ideal in C[W ] generated
by I ′. Since W is finite dimensional, it follows from Hilbert’s basis theorem that there exist
f1, . . . , fk ∈ I that generate the ideal I. We may assume that the fi belong to I ′. Indeed, if
fi /∈ I ′, we can write fi =

∑
j fijgij for certain fij ∈ I ′ and gij ∈ C[W ] and replace fi with the

fij to obtain a finite generating set of I with fewer elements in I \ I ′.
We observe that the ideal I ′ is generated by the fi. Indeed, let h ∈ I ′ ⊆ I and write h =∑

i gifi for some gi ∈ C[W ]. Using the Reynolds operator ρ we find: h = ρ(h) =
∑

i ρ(figi) =∑
i fiρ(gi). The proof is now completed by exercise 2.

Exercise 2. Let A ⊆ C[W ] be a subalgebra, and let A+ = ⊕d≥1A ∩ C[W ]d be the ideal of
polynomials in A with zero constant term. Suppose that the ideal A+ is finitely generated. Show
that A is finitely generated as an algebra over C.

It is well known that for a finite group G, any G-module V is completely reducible. This
implies by Hilbert’s theorem that for finite groups, the invariant ring is always finitely generated.
Noether proved a result stating that for finite groups G, the invariant ring is already generated
by the invariants of degree at most |G|, which implies a bound on the number of generators
needed.

Theorem 3.3. (Noether’s degree bound)) Let G be a finite group, and let W be a (finite
dimensional) G-module. Then the invariant ring C[W ]G is generated by the homogeneous invari-
ants of degree at most |G|.
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4 Noether’s problem
In 1918, Emmy Noether published a seminal paper [32] on the inverse Galois problem. Instead
of determining the Galois group of transformations of a given field and its extension, Noether
asked whether, given a field and a group, it always is possible to find an extension of the field
that has the given group as its Galois group. Noether reduced this to Noether’s problem, which
asks whether the fixed field of a subgroup G of the permutation group Sn acting on the function
fieldK(x1, . . . , xn) always is purely transcendental (i.e. rational) extension of the fieldK. Recall
that a field extension L of K is purely transcendental (or rational) over K if L ' K(x1, . . . , xn)
over K for some integer n, with x1, . . . , xn algebraically independent over K.

Example 4.1. The symmetric group Sn acts on the function field K(x1, . . . , xn), and the
invariant functions are the symmetric functions. According to the Fundamental Theorem on
Symmetric Polynomials:

K(x1, . . . , xn)Sn = K(σ1, . . . , σn).

The elementary symmetric polynomials are algebraically independent over K, so K(σ1, . . . , σn)
is purely transcendental over K, i.e., Noether’s problem has an affirmative answer for Sn over
any field K.

On the other hand, it is known that the answer is ’no’ for someG’s, even for an algebraically
closed K. For most G’s, as for example the alternating groups An with n > 5, the problem
remains open for every K. A more general version of Noether’s problem asks, in Serre’s
terminology [9, 33.1], whether the following property holds:

Noe(G/K): There exists a faithful, finite-dimensional, linearK-representationG ⊂ GL(V )
such that the extension K(V )G/K is rational.

Usually, Noether’s problem is formulated in this way: Let G be a finite group and G act
on the rational function field K(x(g) : g ∈ G) by K automorphisms defined by g ·x(h) = x(gh)
for any g, h ∈ G. Denote by K(G) the fixed field K(x(g) : g ∈ G)G. Noether’s problem then
asks whether K(G) is rational over K.

Noether’s problem for abelian groups was studied extensively by Swan, Voskresenskii,
Endo, Miyata and Lenstra, etc. The reader is referred to Swan’s paper for a survey of this
problem [47]. Fischer’s Theorem is a starting point of investigating Noether’s problem for finite
abelian groups in general.

Theorem 4.1. (Fischer [47, Theorem 6.1]) Let G be a finite abelian group of exponent e.
Assume that (i) either char K = 0 or char K > 0 with char K - e, and (ii) K contains a
primitive e-th root of unity. Then K(G) is rational over K.

Example 4.2. The cyclic group C2 = {1, g} acts on the function field K(x1, xg) by g : x1 7→
xg 7→ x1. Define y1 = x1 + xg, y2 = x1 − xg. We have that K(x1, xg) = K(y1, y2) and g : y1 7→
y1, y2 7→ −y2. It is easy to see now that K(x1, xg)

C2 = K(y1, y2)C2 = K(y1, y
2
2) is rational over

K.

The following theorem of Kang generalizes Fischer’s theorem for the metacyclic p-groups.

Theorem 4.2. (Kang [14, Theorem 1.5]) Let G be a metacyclic p-group with exponent pe, and
let K be any field such that (i) char K = p, or (ii) char K 6= p and K contains a primitive
pe-th root of unity. Then K(G) is rational over K.

- 22 -



MATTEX 2014
Том 1

РАЗДЕЛ ПЛЕНАРНИ ДОКЛАДИ

The next stage is to study Noether’s problem for metabelian groups, and in particular
the central extensions of bicyclic groups.

Theorem 4.3. (Michailov, Ivanov, Ziapkov [27, Theorem 2.2]) Let G be a bicyclic p-group
generated by two elements σ and τ with relations σpa = 1, τ p

b
= 1 and τ−1στ = σ. Assume that

G̃ is a central extension of G, i.e., we have the following group extension

1 −→ C −→ G̃ −→ G ∼= Cpa × Cpb −→ 1,

where C ≤ Z(G̃). Let pt be the exponent of C, let a ≥ b ≥ t and let the pre-image of [σ, τ ] =

σ−1τ−1στ in G̃ be of order pt. Let e = max{a, 2t}. Assume that (i) charK = p or (ii) charK 6=
p, K is infinite, and K contains a primitive pe-th root of unity. Then K(G̃) is rational over K.

Recently, Michailov gave an affirmative answer to Noether’s problem for p-groups having
an abelian normal subgroup of index p.

Theorem 4.4. (Michailov [25, Theorem 1.8]) Let G be a group of order pn for n ≥ 2 with an
abelian subgroup H of order pn−1, and let G be of exponent pe. Choose any α ∈ G such that
α generates G/H, i.e., α /∈ H,αp ∈ H. Denote H(p) = {h ∈ H : hp = 1, h /∈ Hp} ∪ {1},
and assume that [H(p), α] ⊂ H(p). Denote by G(i) = [G,G(i−1)] the lower central series for
i ≥ 1 and G(0) = G. Let the p-th lower central subgroup G(p) be trivial. Assume that (i) char
K = p > 0, or (ii) char K 6= p and K contains a primitive pe-th root of unity. Then K(G) is
rational over K.

The key idea to prove Theorem 4.4 is to find a faithful G-subspace W of the regular
representation space

⊕
g∈GK · x(g) and to show that WG is rational over K. The subspace W

is obtained as an induced representation from H.

5 The inverse problem in Galois theory
The inverse problem of Galois theory consists of two parts:

1. Existence. Determine whether there exists a Galois extensionM/K such that the Galois
group Gal(M/K) is isomorphic to G.

2. Actual construction. If G is realizable as a Galois group over K, construct explicitly
either Galois extensions or polynomials over K having G as a Galois group.

The classical inverse problem of Galois theory is the existence problem for the field K = Q
of rational numbers. The question whether all finite groups can be realized over Q is one of
the most challenging problems in mathematics, and it is still unsolved. If Noether’s Problem
Noe(G/Q) has an affirmative answer, G can be realised as a Galois group over Q, and in fact
over any Hilbertian field of characteristic 0.

In the nineteenth century, the following result was established:

Theorem 5.1. (Kronecker-Weber) Every algebraic number field whose Galois group over Q is
abelian, is a subfield of the cyclotomic field Q(ζ), where ζ is an n-th root of unity for some
natural number n.
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The latter theorem was first stated by Kronecker (1853) though his argument was not
complete for extensions of degree a power of 2. Weber (1886) published a proof, but this
had some gaps and errors that were pointed out and corrected by Neumann (1981). The first
complete proof was given by Hilbert (1896). The proof can be found in most books on class
field theory. In the early 20-th century Hilbert’s 12-th problem on the generalization of the
Kronecker-Weber Theorem gained popularity. The history of the 12-th problem is explained at
lenght in [40].

The first systematic study of the inverse Galois problem started with Hilbert in 1892.
Hilbert used his Irreducibility Theorem to establish the following result:

Theorem 5.2. For any n ≥ 1, the symmetric group Sn and the alternating group An occur as
Galois groups over Q.

The first explicit examples of polynomials with the alternating group An as a Galois group
were given by Schur [42] in 1930.

The next important step was taken in 1937 by A. Scholz and H. Reichard [41, 35] who
proved the following existence result:

Theorem 5.3. For an odd prime p, every finite p-group occurs as a Galois group over Q.

The final step concerning solvable groups was taken by Shafarevich [45], although with
a mistake relative to the prime 2. In the notes appended to his Collected papers, p. 752,
Shafarevich sketches a method to correct this. For a full correct proof, the reader is referred to
the book by Neukirch, Schmidt and Wingberg [33, Chapter IX].

Theorem 5.4. (Shafarevich) Every solvable group occurs as a Galois group over Q.

Of the finite simple groups, the projective groups PSL(2, p) for some odd primes p
were among the first to be realized. The existence was established by Shih in 1974 and later
polynomials were constructed by Malle and Matzat:

Theorem 5.5. (Shih [46]) Let p be an odd prime such that either 2, 3 or 7 is a quadratic
non-residue modulo p. Then PSL(2, p) occurs as a Galois group over Q.

Theorem 5.6. (Malle & Matzat [30]) Let p be an odd prime with p 6≡ ±1 ( mod 24). Then
explicit families of polynomials over Q(t) with Galois group PSL(2, p) can be constructed.

For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu group M23,
have been shown to occur as Galois groups over Q by Matzat and his collaborators. It should be
noted that all these realization results of simple groups were achieved via the rigidity method
and the Hilbert Irreducibility Theorem. Extensive surveys of recent developments regarding the
classical inverse problem can be found for example in [28, 13, 29, 44, 48].

6 The embedding problem in Galois theory
Let k be an arbitrary field and let G be a non simple group. Assume that A is a normal
subgroup of G. Then the realizability of the quotient group F = G/A as a Galois group over k
is a necessary condition for the realizability ofG over k. In this way arises the next generalization
of the inverse problem in Galois theory – the embedding problem of fields.
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Let K/k be a Galois extension with Galois group F , and let

1 −→ A −→ G
α−→ F −→ 1, (1)

be a group extension, i.e., a short exact sequence. Solving the embedding problem related to
K/k and (1) consists of determining whether or not there exists a Galois algebra (called also a
weak solution) or a Galois extension (called a proper solution) L, such that K is contained in L,
G is isomorphic to Gal(L/k), and the homomorphism of restriction to K of the automorphisms
from G coincides with α. We denote the so formulated embedding problem by (K/k,G,A). We
call the group A the kernel of the embedding problem.

1. Cohomological criteria for solvability of embedding problems with cyclic
kernel of order p. Now, let k be an arbitrary field of characteristic not p, containing a
primitive pnth root of unity ζpn for n ∈ N, and put µpn = 〈ζpn〉. Let K be a Galois extension of
k with Galois group F . Consider a non split group extension

1 −→ 〈ε〉 −→ G −→ F −→ 1, (2)

where ε is a central element of order pn in G. We are going to identify the groups 〈ε〉 and µpn ,
since they are isomorphic as F -modules.

Assume that c ∈ H2(F, µpn) is the 2-coclass corresponding to the group extension (2) and
denote by Ωk the Galois group of the algebraic separable closure k̄ over k. The obstruction to
the embedding problem (K/k,G, µpn) we call the image of c under the inflation map infΩk

F :
H2(F, µpn)→ H2(Ωk, µpn).

Note that we have the standard isomorphism of H2(Ωk, µpn) with the pn-torsion in the
Brauer group of k induced by applying H∗(Ωk, ·) to the pn-th power exact sequence of Ωk-
modules 1 −→ µpn −→ k̄× −→ k̄× −→ 1. In this way, the obstruction equals the equivalence
class of the crossed product algebra (F,K/k, c̄) for any c̄ ∈ c. Hence we may identify the
obstruction with a Brauer class in Brpn(k).

Note that we have an injection µpn ↪→ K×, which induces a homomorphism ν : H2(F, µpn)
→ H2(F,K×). Then the obstruction is equal to ν(c), since there is an isomorphism between
the relative Brauer group Br(K/k) and the group H2(F,K×).

More generally, the following result holds.

Theorem 6.1. ([15]) Let n ≥ 1, and let c be the 2-coclass in H2(F, µpn), corresponding to
the non split central group extension (2). Then the embedding problem (K/k,G, µpn) is weakly
solvable if and only if ν(c) = 1. If n = 1 or µpn is contained in the Frattini subgroup Φ(G) of
G (for n > 1), then the condition ν(c) = 1 is sufficient also for the proper solvability of the
problem (K/k,G, µpn) (see [11, §1.6, Cor. 5]).

Henceforth, embedding problems of the kind (K/k,G, µpn) we will call µpn-embedding
problems. We are going to consider first the case n = 1.

From the well-known Merkurjev-Suslin Theorem [20] it follows that the obstruction to
any µp-embedding problem is equal to a product of classes of cyclic p-algebras. The explicit
computation of these cyclic p-algebras, however, is not a trivial task. We are going to discuss
the methods for achieving this goal. Denote by (a, b; ζpn) the equivalence class of the cyclic
pn-algebra which is generated by i1 and i2, such that ip

n

1 = b, ip
n

2 = a and i1i2 = ζpni2i1. Of
course, we assume again that k contains ζpn , a primitive pn-th root of unity. For p = 2 and
n = 1 we have the quaternion class (a, b;−1), commonly denoted by (a, b).

In 1987 Massy [19] obtained a formula for the decomposition of the obstruction in the
case when F = Gal(K/k) is isomorphic to (Cp)

n, the elementary abelian p-group.
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Theorem 6.2. ([19, Théorème 2],[18, Cor. 6.1.6]) Let K/k = k( p
√
a1, p
√
a2, . . . , p

√
an)/k be a

(Cp)
n extension, and let σ1, σ2, . . . , σn ∈ Gal(K/k) be given by σi( p

√
aj)/ p
√
aj = ζδij (δij is the

Kronecker delta). Let
1 −→ µp −→ G −→ Gal(K/k) −→ 1

be a non split central extension, and choose pre-images s1, s2, . . . , sn ∈ G of σ1, σ2, . . . , σn.
Define di(1 ≤ i ≤ n) by spi = ζdi, and dij(i < j) by sisj = ζdijsjsi. Then the obstruction to the
proper solvability of the embedding problem (K/k,G, µp) is

n∏
i=1

(ai, ζ; ζ)di
∏
i<j

(aj, ai; ζ)dij .

Michailov [21, 22] obtained a formula for the decomposition of the obstruction in the case
when the quotient F has a direct factor Cp.

Let H be a p-group and let

1 −→ µp −→ G
π−→ F ∼= H × Cp −→ 1 (3)

be a non split central group extension with characteristic 2-coclass γ ∈ H2(H × Cp, Cp). By
resHγ we denote the 2-coclass of the group extension

1 −→ µp −→ π−1(H)
π−→ H −→ 1.

Let σ1, σ2, . . . , σm be a minimal generating set for the maximal elementary abelian quotient
group of H; and let τ be the generator of the direct factor Cp. Finally, let s1, s2, . . . , sm, t ∈
G be the pre-images of σ1, σ2, . . . , σm, τ , such that tp = ζj and tsi = ζdisit, where i ∈
{1, 2, . . . ,m}; j, di ∈ {0, 1, . . . , p− 1}.

Theorem 6.3. (Michailov [21, Theorem 4.1],[22, Theorem 2.1]) Let K/k be a Galois extension
with Galois group H and let L/k = K( p

√
b)/k be a Galois extension with Galois group H × Cp

(b ∈ k× \ k×p). Choose a1, a2, . . . , am ∈ k×, such that σk p
√
ai = ζδik p

√
ai (δik is the Kronecker

delta). Then the obstruction to the proper solvability of the embedding problem (L/k,G, µp) is

[K,H, resHγ]

(
b, ζj

m∏
i=1

adii ; ζ

)
.

Recently, Michailov proved the following generalizations of theorem 6.2.

Theorem 6.4. (Michailov [26, Theorem 2.5]) Let L/k be an H ∼=
∏t

i=1Cpni extension for some
natural numbers n1 ≤ n2 ≤ · · · ≤ nt. Let

1 −→ µp −→ G −→ H ∼=
t∏
i=1

Cpni −→ 1

be a non split central group extension with cohomology class γ ∈ H2(H,µp). Let Ki/k be the
subextension corresponding to the factor Cpni for i = 1, . . . , t. (I.e., Ki is the fixed subfield
of
∏

j 6=iCpnj .) Let σi be the generator of Cpni for i = 1, . . . , t, and choose ai ∈ k×, such
that p

√
ai ∈ K×i and σj p

√
ai = ζδij p

√
ai (δ is the Kronecker delta). Let s1, . . . , st be the pre-

images of σ1, . . . , σt, let dij ∈ {0, . . . , p − 1} be given by sisj = ζdjisjsi, and let sp
ni

i = ζmi for
i = 1, . . . , t;mi ∈ {0, . . . , p− 1}.

- 26 -



MATTEX 2014
Том 1

РАЗДЕЛ ПЛЕНАРНИ ДОКЛАДИ

Finally, define r = max{i : mi > 0}, n = nr, A = {i : ni = n,mi > 0}, and assume that
k contains ζpn, a primitive pn-th root of unity. Then the obstruction to the proper solvability of
the embedding problem (L/k,G, µp) given by γ is∏

i∈A

(ai, ζ
mi
pn ; ζ) ·

∏
i<j

(aj, ai; ζ)dij .

Theorem 6.5. (Michailov [26, Theorem 2.8]) Let k contain a primitive pn-th root of unity ζpn,
and let L/k = k( pn

√
a1, . . . , pn

√
am)/k be an arbitrary (Cpn)m extension for some m,n ∈ N. Let

1 −→ µpn −→ G −→ (Cpn)m −→ 1

be a non split central group extension, let σ1, σ2, . . . , σm be the generators of (Cpn)m, and let
s1, s2, . . . , sm ∈ G be their pre-images such that sp

n

i = ζjipn and sjsi = ζ
dij
pn sisj, where i ∈

{1, 2, . . . ,m}; ji, dij ∈ {0, 1, . . . , pn − 1} and i < j. Assume that σj pn
√
ai = ζ

δij
pn

pn
√
ai (δij is

the Kronecker delta). Then the obstruction to the weak solvability of the embedding problem
(L/k,G, µpn) is

m∏
i=1

(ai, ζ
ji
pn ; ζpn) ·

∏
i<j

(aj, ai; ζpn)dij .

2. Orthogonal representations of Galois groups. We begin with some preliminaries
about orthogonal representations. Let k be a field of characteristic 6= 2, let V be a finite-
dimensional k-vector space, and let (V, q) be a quadratic space, q being a quadratic form. The
isometries (V, q) 7→ (V, q) constitute a subgroup O(q) of GL(V ), called the orthogonal group of
q. An orthogonal representation of a finite group G is then a homomorphism µ : G −→ O(q) of
G into the orthogonal group of some regular quadratic form q. From now on, by an orthogonal
representation we will mean a faithful one, i.e., an embedding µ : G ↪→ O(q).

We adopt the notations about Clifford algebras used in [18, Ch. 5, S. 2]: C(q) is the
Clifford algebra of q; C0(q) is the even Clifford algebra; C(q) = C0(q)⊕ C1(q); if x ∈ Ci(q), we
write ∂x = i; C×(q) is the Clifford group, defined as the subgroup of C(q)×, consisting of those
invertible elements x, for which xV x−1 = V . The anisotropic vectors of V are in C×(q) and
vuv−1 = −Tv(u) for u, v ∈ V , where v is anisotropic and Tv is the reflection on the hyperplane
v⊥. There is an exact sequence

1 −→ k× −→ C×(q)
r−−−→ O(q) −→ 1,

r being a map defined by rx : u 7→ (−1)∂xxux−1, where x ∈ C×(q) and u ∈ V . In particular,
for C×0 (q) = C×(q) ∩ C0(q) we get another exact sequence

1 −→ k× −→ C×0 (q)
r−−−→ SO(q) −→ 1.

Denote by ι the principal involution on C(q), which preserves the scalars, sums and vectors,
and reverses products. Denote by N : C×(q) −→ k× the norm given by N(x) = xι(x), and by
sp : O(q) −→ k×/2 the spinor norm given by sp(Tv) = q(v). Put Pin(q) = ker(N), Spin(q) =
Pin(q) ∩ C×0 (q).

Hence, we have the long exact sequences

1 −→ µ2 −→ Pin(q)
r−−−→ O(q)

sp−−−→ k×/2
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and
1 −→ µ2 −→ Spin(q)

r−−−→ SO(q)
sp−−−→ k×/2.

If we take the separable closure k̄ of k, we get the short exact sequences

1 −→ µ2 −→ Pin(q̄)
r−−−→ O(q̄) −→ 1 (4)

and
1 −→ µ2 −→ Spin(q̄)

r−−−→ SO(q̄) −→ 1. (5)
Now, let us recall the definition of Galois twist, which involves the existence of the first

cohomological group H1(G,G), where G is non abelian group with a G-action. Assume again
that (V, q) is a quadratic space over k, and that K/k is a Galois extension with Galois group G.
Then we can extend the scalars to get a quadratic space (VK , qK). The semi-linear action of G
then gives us the equation qK(σu) = σqK(u). Conversely, if (W,Q) is a quadratic space over K
endowed with a semi-linear action such that Q(σu) = σQ(u) is satisfied, we obtain a quadratic
space (WG, QG) over k by taking fixed points and restricting Q. These two operations (scalar
extension and fixed points) preserve regularity and are each others inverses. Also, O(Q) is a
G-group by conjugation: (σϕ)(u) = σϕ(σ−1u).

Next, let f : G → O(qK) be a crossed homomorphism. Then we can define a semi-linear
action by σu = fσ(σu) and get an induced quadratic space (Vf , qf ) = ((VK)G, (qK)G) over k.
Furthermore, if g is equivalent to f , i.e., gσ = ϕfσσϕ

−1 for some ϕ ∈ O(qK), then Vg = ϕ(Vf ),
and consequently (Vf , qf ) and (Vg, qg) are equivalent. Hence, to each element in H1(G,O(q))
we can associate an equivalence class of quadratic spaces over k.

The quadratic space (Vf , qf ) is said to arise from (V, q) by taking the Galois twist with
respect to f .

Define the element
hw(q) =

∏
i<j

(ai, aj) ∈ Br(k),

where ai = q(ui) for some canonical orthogonal basis u1, . . . , un of q. Clearly, hw(q) depends
only on the equivalence class of q.

Definition 6.1. The element hw(q) is called the Hasse-Witt invariant or the second Stiefel-
Whitney class of q.

The obstruction now can be calculated by the formula, displayed in the following.

Theorem 6.6. (Fröhlich [6, 18]) Let L/k be a finite Galois extension with Galois group G =
Gal(L/k) and assume G ↪→ O(q) for some regular quadratic form q over k. Let e : Gal(k/k)→
O(q) be the induced crossed homomorphism, and let qe be the Galois twist of q by e. Also, let

1 −→ µ2 −→ G̃ −→ G −→ 1

be the group extension induced by G ↪→ O(q) and the group extension

1 −→ µ2 −→ Pin(q)
r−−−→ O(q) −→ 1.

Let K/k = k(
√
a1, . . . ,

√
ar)/k be the maximal elementary abelian 2-subextension of L/k, and

let ρ1, . . . , ρr ∈ G be such that ρi(
√
aj) = (−1)δij · √aj. Then the obstruction to the embedding

problem (L/k, G̃, µ2) is

hw(q)hw(qe)(d,−de)
r∏
i=1

(ai, sp(ρi)) ∈ Br(k),

where d and de are discriminants of q and qe, respectively.
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Next, let L/k be a finite Galois extension with Galois group G, let H be a subgroup of G
with fixed field K = LH , and let µ : H ↪→ O(q) be an orthogonal representation over k. Then,
according to [6, 7], we can construct an induced orthogonal representation indµ : G ↪→ O(qindµ),
where indµ has as underlying module the induced G-module of the H-module Vq : Vindµ =
⊕(Vq ⊗ σ) = Vq ⊗kH kG, σ running over a given right transversal R of H in G. Note that
Vq ⊂ Vindµ is a subspace which is H-invariant. It is not hard to show that, given an orthogonal
representation µ : H ↪→ O(q), such Vindµ exists and is unique up to an isomorphism (see e.g.
[8, §3.3]). Moreover, the action of G can be explicitly determined: Each element v ∈ Vindµ has
a unique expression v =

∑
wσ ⊗ σ for elements wσ in Vq. For a given g ∈ G, we must have

g · (wσ ⊗ σ) = hwσ ⊗ τ if gσ = τh (τ ∈ R). (6)

Next, assume that we have a special orthogonal representation µ : H ↪→ SO(q) over k.
Denote by k̄ the separable closure of k, and by q̄ the extension of q to k̄. Then we have a
diagram

1 −−−→ µ2 −−−→ H̃ −−−→ H −−−→ 1y y y
1 −−−→ µ2 −−−→ Spin(q̄) −−−→ SO(q̄) −−−→ 1,

where as usual µ2 = {±1} and 1 −→ µ2 −→ H̃ −→ H −→ 1 is the restriction of 1 −→ µ2 −→
Spin(q̄) −→ SO(q̄) −→ 1. The induced orthogonal representation indµ : G ↪→ O(qindµ), in its
turn, gives us the diagram

1 −−−→ µ2 −−−→ G̃ −−−→ G −−−→ 1y y y
1 −−−→ µ2 −−−→ Pin(q̄indµ) −−−→ O(q̄indµ) −−−→ 1.

We have the following.

Theorem 6.7. (Michailov [23, Theorem 2.2]) Let G be a finite group, and let H be a subgroup
of G, such that |H| = 2tm, (t,m ≥ 1). Let also µ : H ↪→ SO(q) be an orthogonal representation
over k with an underlying module Vq, such that n = dimk Vq ≡ 0 (mod 4). Denote by f̄ ∈
Z2(H,µ2) and by f ∈ Z2(G, µ2) the 2-cocycles given by the described above group extensions
1 −→ µ2 −→ H̃ −→ H −→ 1 and 1 −→ µ2 −→ G̃ −→ G −→ 1, respectively. Then [f ] =
corG/H([f̄ ]), where corG/H : H2(H,µ2) −→ H2(G, µ2) is the corestriction map.

We are going to investigate the case when q = 〈1, . . . , 1〉. Denote by e1, . . . , en the standard
basis of V = kn. The reflection Tei−ej (i < j) has spin norm 2, and as pre-image in Pin(q̄) we
can pick xij = (ei − ej)/

√
2. Then xij has order 2, and if i, j, k, ` are four different indices with

i < j and k < l, then xijxk` has order 4.
The reflection Tei−ej interchanges ei and ej, leaving the other ek’s invariant. Hence, it is

the image of the transposition (ij) ∈ Sn under the obvious embedding of the symmetric group
Sn in On(K), and we get a commutative diagram

1 −−−→ µ2 −−−→ S̃n −−−→ Sn −−−→ 1y y y
1 −−−→ µ2 −−−→ Pin(q̄) −−−→ O(q̄) −−−→ 1,
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where S̃n is the pre-image of Sn in Pin(q̄).

Definition 6.2. S̃n is called the stem cover (or the positive double cover) of Sn, and is
characterised as a group extension of Sn by µ2 such that transpositions lift to elements of
order 2, and products of two disjoint transpositions lift to elements of order 4.

Now, let L be the splitting field over k of an irreducible polynomial f(x) ∈ k[x] of degree n,
and let G = Gal(L/k). Let θ = θ1, . . . , θn ∈ K be the roots of f(x), and let K = k(θ). Then we
have an embedding G ↪→ Sn, given by σ(i) = j when σ(θi) = θj, and a map e : Gal(k/k)→ Sn
induced from resK : Gal(k/k) → G. Since the Gal(k/k) action on Sn is trivial, e is a crossed
homomorphism. The corresponding twisted Galois action is σ(xi)i = (σxσ−1i)i, and the fixed
points are (g(θi))i for d(x) ∈ K[x]. The fixed points constitute a field isomorphic to K, and the
twisted form of q is QK : x 7→ TrK/k(x

2).

Definition 6.3. QK : x 7→ TrK/k(x
2) is called the trace form of K/k.

To apply Fröhlich result, we must also find the term
∏

i=1(ai, sp(ρi)). Note that sp :
G → k∗/k∗2 maps even permutations to 1 and odd permutations to 2. Picking a1 to be the
discriminant dK/k of K/k, we get ρ2, . . . , ρr to be even, and so the term is simply (2, dK/k), i.e.,
we have

Theorem 6.8. (Serre [43]) Let L/k be Galois with Galois group G, and let

1 −→ µ2 −→ G̃ −→ G −→ 1 (7)

be the extension obtained as a restriction of the positive double cover

1 −→ µ2 −→ S̃n −→ Sn −→ 1.

Then the obstruction to the embedding problem given by L/k and (7) is

hw(QK) · (2, dK/k) ∈ Br(k),

where K = LG∩S
(1)
n , S

(1)
n = {σ ∈ Sn | σ(1) = 1}.

Consider the restriction 1→ µ2 → Ãn → An → 1 of 1→ µ2 → S̃n → Sn → 1. We have

Theorem 6.9. Let L/k be Galois with Galois group G, and let

1 −→ µ2 −→ G̃ −→ G −→ 1 (8)

be the extension obtained as a restriction of

1 −→ µ2 −→ Ãn −→ An −→ 1.

Then the obstruction to the embedding problem given by L/k and (8) is

hw(QK) ∈ Br(k),

where K = LG∩A
(1)
n , A

(1)
n = {σ ∈ An | σ(1) = 1}.
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Now, assume again that L/k is a normal and separable extension with a finite Galois
group G. We can always find a primitive element θ such that L = k(θ). Let f(x) ∈ k[x] be the
minimal polynomial of θ of degree n = [L : k], and let θ = θ1, θ2, . . . , θn be the conjugates of θ.
Then G = G(f) embeds transitively into the symmetric group Sn.

For a given proper subgroup H of G, we setm = |H| and κ = (G : H) = n/m. Clearly, θ is
a primitive element of the extension L/K as well, where K = LH . Since the minimal polynomial
of θ over K divides f(x), we can assume that θ = θ1, θ2, . . . , θm for 1 < m = [L : K] < n are
the conjugates of θ over K. H embeds transitively in Sm, so we can take the group extension

1 −→ µ2 −→ H̃ −→ H −→ 1, (9)

which is the restriction of the group extension

1 −→ µ2 −→ S̃m −→ Sm −→ 1,

S̃m being the positive double cover of Sm.
Next, recall that for the quadratic form q1 = 〈1, . . . , 1〉 on V1 = km we have that Sm

embeds in Om(k) = O(q1), so we get an orthogonal representation H ↪→ Om(k). Set q = q1 ⊥
q2 ⊥ · · · ⊥ qκ and V = V1 ⊕ V2 ⊕ · · · ⊕ Vκ, where q1 = q2 = · · · = qκ and V1 = V2 = . . . Vκ. In
this way, we get the induced orthogonal representation G ↪→ On(k), which is identical to the
transitive embedding of G = G(f) in Sn. Now, take the group extension

1 −→ µ2 −→ G̃ −→ G −→ 1, (10)

which is the restriction of the group extension

1 −→ µ2 −→ S̃n −→ Sn −→ 1.

Denote by f ∈ Z2(H,µ2) the 2-cocycle representing (9) and by f ∈ Z2(G, µ2) the 2-cocycle
representing (10), i.e., f = res(sm) and f = res(sn). From Theorem 6.7 now follows that
[f ] = corG/H([f ]), under the extra assumptions H ↪→ SOm(k) and m ≡ 0 (mod 4).

7 Cohomological invariants
In this section we will present a cohomological approach to invariant theory in the terminology of
Serre [9]. First, let us recall two basic concepts of homological algebra - category and functor.
In general, a category is an algebraic structure that comprises ”objects” that are linked by
”arrows”. A category has two basic properties: the ability to compose the arrows associatively
and the existence of an identity arrow for each object. A simple example is the category of
sets, whose objects are sets and whose arrows are functions. One commonly used definition is
as follows.

Definition 7.1. A category C consists of

• a class ob(C) of objects.

• a class hom(C) of morphisms, or arrows, or maps, between the objects. Each morphism
f has a unique source object a and target object b where a and b are in ob(C). We write
f : a 7→ b.
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• for every three objects a, b and c, a binary operation hom(a, b) × hom(b, c) 7→ hom(a, c)
called composition of morphisms; the composition of f : a 7→ b and g : b 7→ c is written
as g ◦ f or gf .

such that the following axioms hold:

• (associativity) if f : a 7→ b, g : b 7→ c and h : c 7→ d then h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

• (identity) for every object x, there exists a morphism idx : x 7→ x called the identity
morphism for x, such that for every morphism f : a 7→ x and every morphism g : x 7→ b,
we have idx ◦ f = f and g ◦ idx = g.

A functor is a type of mapping between categories, which is applied in category theory.
Functors can be thought of as homomorphisms between categories.

Definition 7.2. Let C and D be categories. A functor F from C to D is a mapping that

• associates to each object X ∈ C an object F (X) ∈ D,

• associates to each morphism f : X → Y ∈ C a morphism F (f) : F (X)→ F (Y ) ∈ D such
that the following two conditions hold:

– F (idX) = idF (X) for every object X ∈ C
– F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z.

That is, functors must preserve identity morphisms and composition of morphisms.

Now, let us fix a ground field k0, and consider the category Fields/k0 of field extensions k
of k0 and two functors

A : Fields/k0 −→ Sets

and
H : Fields/k0 −→ Abelian Groups.

Definition 7.3. An H-invariant of A is a morphism of functors a : A→ H.

Here, we view H as a functor with values in Sets. Hence, a : A → H means giving, for
every k ∈ Fields/k0 , a map ak : E 7→ a(E) of A(k) into H(k) such that, if φ : k → k′ is a
morphism in Fields/k0 , the diagram

A(k)
ak−−−→ H(k)y y

A(k′)
ak′−−−→ H(k′)

is commutative.
Our aim will be to determine explicitly in some cases the group Inv(A,H) of all such

invariants. If it is necessary to emphasize the role of the base field k0, we will write Invk0(A,H).
We consider several examples below of the functor A for an extension k of k0.
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Example 7.1. (Étale algebras). Let n be a natural number. We define the functor A by

k 7→ Etn(k) = {isomorphism classes of étale algebras over k of rank n}.

Recall that an étale k-algebra E of rank n is a commutative k-algebra such that E ∼=
∏

i ki
for ki finite separable field extensions of k and

∑
i[ki : k] = n. An equivalent definition is that

E is commutative, [E : k] = n, and the k-bilinear form defined on E by (x, y) 7→ TrE(xy) is
nondegenerate. The two most important cases are the one where E is a field, and the one where
E is split, i.e., isomorphic to k × · · · × k.

Example 7.2. (Galois algebras). Let G be a finite group. A G-Galois algebra over k is an étale
algebra E with an action of G such that G acts simply transitively on Hom(E, ks), where ks is
a separable closure of k. We define the functor A by

k 7→ G−Gal(k) = {isomorphism classes of G-Galois algebras over k}.

Example 7.3. (Central simple algebras). For n ≥ 1 we define the functor A by

k 7→ CSAn(k) = {isomorphism classes of central simple algebras of dimension n2 over k}.

Example 7.4. (Quadratic forms). Let char k0 6= 2. For n ≥ 1 we define the functor A by

k 7→ Quadn(k) = {isomorphism classes of nondegenerate quadratic forms over k of rank n}.

We write 〈α1, . . . , αn〉 for the diagonal quadratic form defined by α1, . . . , αn.

Let k be an algebraic closure of k, and let ks be the separable closure of k ink. Put
Γk = Gal(ks/k) = Aut(k/k). We give now the main example of the functor H.

Example 7.5. (Abelian Galois cohomology). Let C be a discrete Γk0-module. For any extension
k/k0, we have a natural map Γk → Γk0 (defined up to inner conjugation), so that the cohomology
groups H i(Γk, C), i = 0, 1, . . . make sense. They are denoted by H i(k, C), and their direct sum
is written H(k, C). These groups are functorial in k, i.e., they define functors

Fields/k0 −→ Abelian Groups.

These will be the functors ”H” that we will consider most of the time, and for such H we write
Invi(A,C) or Inv(A,C), instead of Invi(A,H) or Inv(A,H). We will assume that C is finite
and of order not divisible by the characteristic, the principal example being C = C2, the cyclic
group of order 2.

Next, we will determine Inv(G,C2) for G elementary abelian of type (2, 2, . . . , 2). We write
H i(k) for H i(k, C2) and H(k) for the direct sum of the H i(k). Thus H0(k) = C2 and H1(k) =
k∗/k∗2. For a ∈ k∗, write (a) for the corresponding class in H1(k), so that (ab) = (a) + (b). The
cup product (a) · (b) corresponds (via the usual identification of H2(k) with a subgroup of the
Brauer group Br(k)) to the quaternion algebra (a, b). In partucular, (a) · (b) = 0 if and only
if the quadratic form 〈1,−a,−b〉 represents 0, i.e., b is a norm from the extension k(

√
a)/k or

equivalently from the quadratic étale algebra k[x]/(x2 − a).
Let G = C2. An arbitrary element of H1(k,G) is given by α ∈ k∗/k∗2. Write id for

the invariant (i.e., element of Invk0(C2, C2)) which sends α to (α) ∈ H1(k). The cohomology
invariant of C2 is given by the following.
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Proposition 7.1. ([9, 16.2, Proposition]) Invk0(C2, C2) is a free H(k0)-module with basis
{1, id}.

Now, let G = C2 × · · · × C2 (n times). An arbitrary element of H1(k,G) is given by
an n-tuple (α1, . . . , αn) ∈ k∗/k∗2 × · · · × k∗/k∗2. For I a subset of [1, n], we write (a)I for
the cup product

∏
i∈I(αi) ∈ H(k). We have (α)∅ = 1 ∈ H0(k). Write aI for the invariant

(α1, . . . , αn) 7→ (α)I . The cohomology invariant of G is given by the following.

Theorem 7.2. ([9, 16.4, Theorem]) Let G = C2 × · · · × C2 (n times). Then Invk0(G,C2) is a
free H(k0)-module with basis (aI)I⊂[1,n].

Next, we determine Inv(Quadn, C2).

Definition 7.4. If q is a quadratic form of rank n over k, we may write it as q = 〈α1, α2, . . . , αn〉
for αi ∈ k∗. Let wi(q) be the i-th elementary symmetric polynomial in the (αj)’s computed in
the commutative ring H(k):

w0 = 1,

w1 =
∑
i

(αi) = (α2α2 · · ·αn) = (d(q)),

w2 =
∑
i<j

(αi) · (αj),

...
wn = (α1) · (α2) · · · (αn),

wi = 0 if i < 0 or i > n.

wi(q) is called the i-th Stiefel-Whitney class.

It is known that these are indeed invariants of q, i.e., they do not depend on the particular
way of writing q as 〈α1, α2, . . . , αn〉. They provide n+ 1 elements in Inv(Quadn, C2).

Definition 7.5. We write w(q) for the total Stiefel-Whitney class

w(q) =
n∑
i=0

wi(q) ∈ H(k).

It is characterized by the properties

1. w(〈α〉) = 1 + (α)

2. w(q ⊕ q′) = w(q) · w(q′).

The cohomology invariant of Quadn is given by the following.

Theorem 7.3. ([9, 17.3, Theorem]) The group Inv(Quadn, C2) is a free H(k0)-module with
basis {w0, w1, . . . , wn}.
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In the remaining of this section we will describe the cohomological invariants of Etn.
We have obvious embeddings Sn ↪→ On ↪→ GLn, where On and GLn are endowed with

the usual topology. Let BOn and BSn be the ”classifying spaces” of On and Sn, cf. [2, §8]. The
map BSn → BOn defines a map of singular cohomology groups

H(BOn , C2)→ H(BSn , C2).

Since Sn is discrete, the cohomology of Sn (in the algebraic sense of the word) is the same
as the (topological) cohomology of the classifying space BSn ; that is we have the identity
H(BSn , C2) = H(Sn, C2). Thus any element of H(BOn , C2) defines a corresponding element of
H(BSn , C2) = H(Sn, C2). In particular, the Stiefel-Whitney classes w1, . . . , wn of H(BOn , C2)
define elements of H(Sn, C2) which we will again denote by w1, . . . , wn.

Definition 7.6. The associated elements of Inv(Etn, C2) are called Galois Stiefel-Whitney
classes and are denoted by wgal

i (E) (or just wgal
i ).

Recall that if E ∈ Etn(k), its trace form qE is the quadratic form on E defined by
qE(x) = TrE/k(x

2). This gives a morphism Etn → Quadn. The Stiefel-Whitney invariants of
Quadn thus define cohomological invariants wi on Etn by wi(E) = wi(qE). The relation between
wi and wgal

i is given by the following.

Theorem 7.4. (Kahn [12]) For E ∈ Etn(k),

wgal
i =

{
wi(qE) if i is odd
wi(qE) + (2) · wi−1 if i is even

in H(k, C2).

Example 7.6. w1 ∈ H1(Sn, C2) = Hom(Sn, C2) is the sign homomorphism, and wgal
1 is the

discriminant. w2 ∈ H2(Sn, C2) determines the positive double cover S̃n of Sn (see definition
6.2). wgal

2 = w2 + (2) · wgal
1 is the obstruction to the embedding problem related to the group

extension (7) (from theorem 6.8).

Let m = [n/2], the integral part of n/2, and let H = C2×· · ·×C2 (m copies). We identify
H with the subgroup of Sn generated by the m transpositions (12), (34), . . . . By [9, Theorem
24.11] the restriction map

Invk0(Etn, C2) = Invk0(Sn, C2)→ Invk0(H,C2)

is injective. Moreover, by [9, 13.2], its image lies in the subgroup Invk0(H,C2)Sn of Invk0(H,C2)
fixed by the action of the symmetric group Sn (acting on H by permuting the factors). The
cohomology invariant of Etn is given by the following.

Theorem 7.5. ([9, Theorem 25.6])

(1) The map res : Invk0(Etn, C2)→ Invk0(H,C2)Sn is an isomorphism.

(2) The H(k0)-module Invk0(Etn, C2) is free with basis {1, wgal
1 , . . . , wgal

m }, where m = [n/2].

(3) wgal
i = 0 for i > m.
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8 Noether’s problem revisited
Noether’s problem can be formulated also thus:

Definition 8.1. Noe(G/k0) - There exists an embedding ρ : G→ GLn(k0) such that, if Kρ is
the subfield of k0(X1, . . . , Xn) fixed by G, then Kρ is k0-rational.

Consider a finitely generated extension K/k0; let C be a finite Γk0-module.

Definition 8.2. An element a ∈ H(K,C) is said to be unramified over k0 if, for every discrete
valuation v of K which is trivial on k0, the residue of a at v is 0.

Definition 8.3. There is a natural embedding H(k0) → Invk0(A,H); namely, if h ∈ H(k0),
we define the invariant ah by setting ah(x) = image of h in H(k) for every x ∈ A(k). Such
an invariant is called constant. Suppose we have fixed a base point for A. We say that a is
normalized if a vanishes on the base point.

Every invariant can be written in a unique way as (constant) + (normalized).

Proposition 8.1. ([9, Prop. 33.7]) If K/k0 is rational, every unramified cohomology class in
H(K,C) is constant, i.e., belongs to H(k0, C).

Proposition 8.2. ([9, Prop. 33.10]) If a ∈ Invk0(G,C) is unramified over k0, and if Noe(G/k0)
is true, then a is constant.

Corollary 8.3. ([9, Corol. 33.10]) Suppose that Noe(G/k0) is true and that a is normalized
and unramified. Then a = 0.

Remark. Instead of the assumption Noe(G/k0) is true in the latter two results, we may assume
that Rat(G/k0) is true, where Rat(G/k0) is a weaker condition, defined in [9, 33.1] with the
help of versal torsors.

We can apply corollary 8.3 in this way: we construct a non-zero cohomological invariant
a which is unramified and normalized. By corollary 8.3, this will show that Noether’s problem
has a negative solution for G over k0.

Example 8.1. Let G = C2m , the cyclic group of order 2m for m ≥ 3. Every x ∈ H1(k,G)
defines by reduction mod 2 an element d(x) of H1(k, C2) = H1(k). Put

b(x) = (2) · d(x) ∈ H2(k).

This defines an invariant b ∈ Invk0(G,C2).

Proposition 8.4. ([9, Prop. 33.15]) The invariant b defined above is unramified and normalized.
If the ground field is Q, this invariant is not 0.

Corollary 8.5. ([9, Theorem 33.16]) Let G be a group with a 2-Sylow subgroup which is cyclic
of order ≥ 8. Then Noe(G/k0) is false.

Moreover, we have

Theorem 8.6. ([9, Theorem 34.7]) Let G be a group with a 2-Sylow subgroup which is isomorphic
to the quaternion group Q16 of order 16. Then Noe(G/Q) is false.
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Next, we will consider the groups Ãn, where 1→ µ2 → Ãn → An → 1 is the restriction of
1→ µ2 → S̃n → Sn → 1. Take an étale algebra E of rank n over a field k, and let ϕE : Γk → Sn
be the corresponding homomorphism. Let wi(E) be the Stiefel-Whitney classes of the trace form
qW . By [9, 25.3,25.10] we have that the image of ϕE is contained in An if and only if w1(E) = 0.
Suppose that the image of ϕE is contained in An. The homomorphism ϕE : Γk → Sn can be
lifted to Ãn if and only if w2(E) = 0 (this follows from theorem 6.9 for G = An).

Set n = 6 or 7, let t be an element ofH1(k, Ãn), and let E(t) in Etn(k) be the corresponding
étale algebra. According to [9, 33.23], the trace form of E(t) is of the form

〈1, 1, c, c, c, c〉 (for n = 6) or 〈1, 1, 1, c, c, c, c〉 (for n = 7)

for a suitable c ∈ k∗. Moreover, the element (c) · (−1) · (−1) ∈ H3(k) does not depend on the
choice of c. Let us denote it by e(t). We may view e as a cohomological invariant

e : H1(k, Ãn)→ H3(k).

Proposition 8.7. ([9, Prop. 33.24]) The invariant e defined above is unramified and normalized.
If the ground field is Q, this invariant is not 0.

Corollary 8.8. ([9, Theorem 33.25]) Noether’s problem has a negative solution for Ã6 and Ã7

over Q.

Corollary 8.9. ([9, Theorem 33.26]) Noether’s problem has a negative solution for any subgroup
G of odd index of Ã7 over Q.

Example 8.2. Among the subgroups of odd index of Ã7, there are the following

SL2(F9) = Ã6, SL2(F7), Q16, Ŝ4, Ŝ5.

Here Ŝn (the negative double cover of Sn) denotes the unique central extension of Sn by µ2 in
which the transpositions and the product of two disjoint transpositions lift as elements of order
4. This is not the same as S̃n (the positive double cover of Sn).

Remark. The strategy we used so far is essentially due to Saltman and Bogomolov. However,
there is a difference: the invariants we used come from the properties of the trace form; Saltman
and Bogomolov uded a cohomological invariant that we will discuss in what follows.

Saltman [38] found examples of groups G of order p9 such that C(V )G is not stably
rational over C. His main method was an application of the unramified cohomology group
H2
nr(C(V )G,Q/Z) as an obstruction. Bogomolov [1] proved thatH2

nr(C(V )G,Q/Z) is canonically
isomorphic to

B0(G) =
⋂
A

ker{resAG : H2(G,Q/Z)→ H2(A,Q/Z)}

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either a
cyclic group or a direct product of two cyclic groups).

Definition 8.4. The group B0(G) is a subgroup of the Schur multiplier H2(G,Q/Z), and is
called the Bogomolov multiplier of G.
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According to [38] the vanishing of the Bogomolov multiplier is an obstruction to Noether’s
problem, that is if B0(G) 6= 0, then Noe(G/C) is false.

While the non-zero unramified invariants were used so far to give a negative answer
to Noether’s problem, surprisingly there are some examples of zero invariants giving a positive
answer to Noether’s problem. This invariants are the obstructioins to some embedding problems,
which we are going to describe.

Let Br(K) denote the Brauer group of a field K, and BrN(K) its N -torsion subgroup for
any N > 1. Following Roquette [36], if γ = [B] ∈ Br(K) is the class of a K-central simple
algebra B and m ≥ 1 is a multiple of the index of B, then Fm(γ) denotes the m-th Brauer field
of γ. Moreover, Fm(γ)/K is a regular extension of transcedence degree m− 1, which is rational
if and only if γ is trivial. The following result was essentially obtained by Saltman in [39, p.
541] and proved in detail by B. Plans [34, Prop. 7].

Theorem 8.10. (Saltman, Roquette, Plans) Let 1→ C → H → G→ 1 be a central extension
of finite groups, representing an element ε ∈ H2(G,C). Let K be an infinite field and let N
denote the exponent of C. Assume that N is prime to the characteristic of K and that K
contains µN – the group of N-th roots of unity. Let be given a decomposition C ∼= µN1 ×
· · · × µNr , and let the corresponding isomorphism H2(G,C) ∼= ⊕iH2(G, µNi

) map ε to (ε)i.
Let also be given a faithful subrepresentation V of the regular representation of G over K,
and let γi ∈ BrN(K(V )G) ⊂ Br(K(V )G) be the inflation of εi with respect to the isomorphism
G ∼= Gal(K(V )/K(V )G). Then

K(H) is rational over the K(V )G − free compositum Fm(γ1) · · ·Fm(γr),

where m denotes the order of G.

Michailov proved the following applications of the latter theorem.

Theorem 8.11. ([24, Theorem 2.7]) Let p be a prime, let F be an infinite field with characteristic
not p, and let F contain all pth roots of unity. Let 1→ µp → H → G→ 1 be a non-split central
extension of finite groups, representing an element ε ∈ H2(G, µp). Let L = K(xg : g ∈ G) be the
rational function field with a G-action given by the regular representation of G over K. Assume
that the embedding problem given by L/K(G) and the group extension 1→ µp → H → G→ 1
is solvable. Then K(H) is rational over K(G).

Proof. Note that the obstruction i(γ) = inf(ε) ∈ Brp(K(G)) is isomorphic to the crossed
product algebra [L,G, ε], which is split in Brp(K(V )G), since the embedding problem is solvable.
Hence Fm(γ) is rational over K(G), so Theorem 8.10 implies our result.

Theorem 8.12. ([24, Theorem 5.1]) Let H be a non-abelian group of order 8n, having a cyclic
subgroup of order 4n for any n ≥ 2, and let 1→ µ2 → G→ H → 1 be a group extension such
that G does not have a cyclic subgroup of index 2. Assume that K is a field which contains a
primitive 4n-th root of unity ζ. Then K(G) is rational over K.

Let us consider the following groups.

D8n
∼= 〈σ, τ | σ4n = τ 2 = 1, τσ = σ−1τ〉 − the dihedral group,

SD8n
∼= 〈σ, τ | σ4n = τ 2 = 1, τσ = σ2n−1τ〉 − the semidihedral group,

Q8n
∼= 〈σ, τ | σ4n = 1, τ 2 = σ2n, τσ = σ−1τ〉 − the quaternion group.
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Next, we describe the cohomology groups H2(H,µ2) for H being isomorphic to any of the
groups D8n, SD8n and Q8n.

I.1) Let H ∼= D8n.
We have the following non-equivalent exact sequences:

1→ µ2 → G −→
σ 7→σ
τ 7→τ

D8n → 1,

where the generators σ and τ of G have relations: σ4n = ε1, τ
2 = ε2, τσ = ε3σ

−1τ for εi = ±1.
The existence of the group G for any choice of εi is easily verified. Therefore, H2(D8n, µ2) ∼= µ3

2

and all non-split sequences give us 6 non-isomorphic groups:

G1
∼= D16n, G2

∼= SD16n, G3
∼= Q16n,

G4 = 〈σ, τ, ρ | σ4n = 1, τ 2 = ρ− central, ρ2 = 1, τσ = σ−1τ〉,
G5 = 〈σ, τ, ρ | σ4n = 1, τ 2 = ρ− central, ρ2 = 1, τσ = σ−1τρ〉,
G6 = 〈σ, τ, ρ | σ4n = 1, τ 2 = 1, ρ2 = 1, ρ− central, τσ = σ−1τρ〉.

I.2) Let H ∼= SD8n.
We have the following non-equivalent exact sequences:

1→ µ2 → G −→
σ 7→σ
τ 7→τ

SD8n → 1,

where the generators σ and τ of G have relations: σ4n = 1, τ 2 = ε2, τσ = ε3σ
2n−1τ for εi =

±1 (2 ≤ i ≤ 3). There is no group extension for ε1 = −1. Therefore, H2(SD8n, µ2) ∼= µ2
2 and

all non-split sequences give us 3 non-isomorphic groups:

G7 = 〈σ, τ, ρ | σ4n = 1, τ 2 = ρ− central, ρ2 = 1, τσ = σ2n−1τ〉,
G8 = 〈σ, τ, ρ | σ4n = 1, τ 2 = ρ− central, ρ2 = 1, τσ = σ2n−1τρ〉,
G9 = 〈σ, τ, ρ | σ4n = 1, τ 2 = 1, ρ2 = 1, ρ− central, τσ = σ2n−1τρ〉.

Now, let H be isomorphic to D8n or SD8n and let L/F be a H-extension. Then L/F
contains a biquadratic extension K/F = F (

√
a,
√
b)/F , such that the generators σ and τ of H

act in the following way:

σ :
√
a 7→ −

√
a,
√
b 7→
√
b,

τ :
√
a 7→

√
a,
√
b 7→ −

√
b.

In [23] and [50] the reader can find two different approaches for the calculation of the obstructions
displayed in the following three propositions.

Proposition 8.13. (Ziapkov [50, Th. 2.1]) Let F be a field with char(F ) 6= 2, let H be
isomorphic to D8n or SD8n and let L/F be a H-extension containing a biquadratic extension
K/F = F (

√
a,
√
b)/F . Then the obstruction to the embedding problem given by L/F and the

group extension
1→ µ2 → Gi → H → 1

for i = 4 and i = 7 is (b,−1) ∈ Br(F ).
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Proposition 8.14. (Ziapkov [50, Th. 2.2]) Let F be a field with char(F ) 6= 2, let H be
isomorphic to D8n or SD8n and let L/F be a H-extension containing a biquadratic extension
K/F = F (

√
a,
√
b)/F . Then the obstruction to the embedding problem given by L/F and the

group extension
1→ µ2 → Gi → H → 1

for i = 6 and i = 9 is (a,−1) ∈ Br(F ).

Proposition 8.15. (Ziapkov [50, Th. 2.3])Let F be a field with char(F ) 6= 2, let H be
isomorphic to D8n or SD8n and let L/F be a H-extension containing a biquadratic extension
K/F = F (

√
a,
√
b)/F . Then the obstruction to the embedding problem given by L/F and the

group extension
1→ µ2 → Gi → H → 1

for i = 5 and i = 8 is (ab,−1) ∈ Br(F ).

Next, we are going to prove the following.

Theorem 8.16. (Michailov [24, Theorem 5.5]) Assume thatK is an infinite field with char(K) 6=
2, which contains a primitive 2n-th root of unity ζ for some n- even. Then K(Gi) is rational
over K for any i = 4, 5, 6, 7, 8, 9.

Proof. Let H be isomorphic to D8n or SD8n and let L/F = K(xh : h ∈ H)/K(H) be the H-
extension obtained by the rational function field K(xh : h ∈ H). From Propositions 8.13,8.14
and 8.15 then follows that the obstruction to the embedding problem given by L/F and 1 →
µ2 → Gi → H → 1 is (∗,−1) ∈ Br(K(H)). Note that K has a fourth root of unity (n is even),
so the obstruction (∗,−1) is always split. Then Theorem 8.11 implies the rationality of K(Gi),
since K(H) is rational, as is well known.

9 Linear codes
Invariant theory and in particular automorphisms of finite fields play an important role in
coding theory. A linear code is a linear subspace C ⊆ Fnq , where Fq is the field of q elements.
The number n is called the length of the code. In the following, we will only consider binary
codes, that is, q = 2. The weight w(u) of a word u ∈ Fn2 is the number of nonzero positions in
u, that is, w(u) := |{i | ui = 1}|. The Hamming distance d(u, v) between two words is defined
as the number of positions in which u and v, differ: d(u, v) = w(u− v).

A code C ⊆ Fn2 is called an [n, k, d]-code if the dimension of C is equal to k and the
smallest Hamming distance between two distinct codewords is equal to d. In the setting of
error correcting codes, messages are transmitted using words from the set of 2k codewords. If
at most (d − 1)/2 errors are introduced (by noise) into a codeword, the original can still be
recovered by finding the word in C at minimum distance from the distorted word. The higher
d, the more errors can be corrected and the higher k, the higher the information rate.

Much information about a code, including the parameters d and k, can be read of from
its weight enumerator WC . This is the polynomial in x, y and homogeneous of degree n, defined
by

WC(x, y) :=
n∑
i=0

Aiy
ixn−i, Ai := |{u ∈ C | w(u) = i}|.
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Observe that the coefficient of xn in WC is always equal to 1, since C contains the zero word.
The number 2k of codewords equals the sum of the coefficients A0, . . . , An and d is the smallest
positive index i for which Ai > 0.

For a code C ⊆ Fn2 , the dual code C⊥ is defined by

C⊥ := {u ∈ Fn2 | u · c = 0 for all c ∈ C}, where u · c := u1c1 + · · ·uncn.

Clearly, the sum of dimensions of a code C and its dual C⊥ equals n.
The MacWilliams identity relates the weight enumerator of a code C and that of its dual

C⊥.

Proposition 9.1. Let C ⊆ Fn2 be a code. The weight enumerator of C⊥ satisfies

WC⊥(x, y) =
1

|C|
WC(x+ y, x− y).

A code is called self-dual if C = C⊥. This implies that n is even and the dimension of C
equals n/2. Furhermore, we have for every c ∈ C that c · c = 0 so that w(c) is even. If every
word in C has weight divisible by 4, the code is called even (or sometimes doubly even).

Next, Let W = ⊕∞d=0Wd be a direct sum of finite dimensional (complex) vector spaces
Wd. The Hilbert series (or Poincaré series) H(W, t) is the formal power series in t defined by

H(W, t) :=
∞∑
d=0

dim(Wd)t
d,

and encodes in a convenient way the dimensions of the vector spacesWd. In this section,W will
usually be the vector space C[V ]G of polynomial invariants with respect to the action of a group
G, where Wd is the subspace of invariants homogeneous of degree d. For finite groups G, it is
possible to compute the Hilbert series directly, without prior knowledge about the generators.
This is captured in the following theorem of Molien.

Theorem 9.2. (Molien) Let ρ : G → GL(V ) be a representation of a finite group on a finite
dimensional vector space V . Then the Hilbert series is given by

H(C[V ]G, t) =
1

|G|
∑
g∈G

1

det(I − ρ(g)t)
.

Consider an even, self-dual code C. Then its weight enumerator must satisfy

WC(x, y) = WC

(
x+ y√

2
,
x− y√

2

)
, WC(x, y) = WC(x, iy).

This means that WC is invariant under the group G generated by the matrices

A =
1√
2

(
1 1
1 −1

)
, B =

(
1 0
0 i

)
,

a group of 192 elements.
What can we say about the invariant ring C[x, y]G? Using Molien’s theorem, we can find

the Hilbert series:
H(C[x, y]G, t) =

1

(1− t8)(1− t24)
.
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This suggests that the invariant ring is generated by two algebraically independent polynomials
f1, f2 homogeneous of degrees 8 and 24 respectively. This is indeed the case, just take f1 =
x8 + 14x4y4 + y8 and f2 = x4y4(x4− y4)4. So the invariant ring is generated by f1 and f2, which
implies the following powerful theorem on the weight enumerators of even self-dual codes.

Theorem 9.3. (Gleason) The weight enumerator of an even self-dual code is a polynomial in
x8 + 14x4y4 + y8 and x4y4(x4 − y4)4.

For more information about the weight enumerator, automorphisms and related topics we
refer the reader to [51, 31].

We conclude this section with an interesting application of Clifford algebras and orthogonal
groups in coding theory found by J. Wood. He showed that there is an equivalence of self-dual
codes and abelian subgroups of Ṽ ⊆ Spin(n). Let V ′ = V ′(n) = {diagonal matrices in O(n)},
with basis v1, v2, . . . , vn, where vi = v{i} is the diagonal matrix with −1 in position i, 1’s
elsewhere on the diagonal. The dot product is defined with respect to this basis. V ′ ∼= (Z/2)n

is an n-dimensional vector space over Z/2 = F2, and V ⊆ V ′.

Theorem 9.4. (Wood [49, Theorem 2.1]))

(1) There is a 1−1 correspondence between the abelian subgroups of Ṽ ⊆ Spin(n) which contain
−1 and the self-dual binary linear codes in V ′(n).

(2) There is a 1−1 correspondence between the elementary abelian 2-subgroups of Ṽ ⊆ Spin(n)
which contain −1 and the even self-dual binary linear codes in V ′(n).

10 Shape invariants of space curves
The direct similarities of the Euclidean space R3 preserve the orientation and the angles.
Geometric objects in R3 like triangles and tetrahedra have a natural description with respect
to the group of direct similarities by measures of two and four angles. It is well-known that a
regular space curve with nonzero curvarure, so called a Frenet space curve, is determined up to
a Euclidean motion of R3 by its curvature and torsion (see [10, Ch. 7]). For a Frenet space curve
we introduce a shape as an ordered pair of two invariants called a shape curvature and a shape
torsion. The use of a spherical arc-length parameter plays a key role in these considerations.

Definition 10.1. ([5]) Let c : I −→ R3 be a Frenet space curve of the class C3 parameterized
by a spherical arc length parameter σ. Let κ1(σ) and κ2(σ) be the curvature and the torsion of
c, respectively. The functions κ̃1 = − dκ1

κ1dσ
and κ̃2 = κ2

κ1
are called shape curvature and shape

torsion of c. The ordered pair (κ̃1, κ̃2) is called a (local) shape of the curve c.

The definition of the ”shape curvature” in terms of a spherical arc length parameter
suggests to recognize the curve from its ”shape data”. Two Frenet curves with the same torsion
and the same always positive curvature are equivalent modulo a Euclidean motion. This statement
can be extended for the Frenet curves with the same shape curvature and shape torsion.

Encheva and Georgiev obtained an analog of the fundamental theorem of space curves.

Theorem 10.1. (Encheva, Georgiev [5]) Let fi : I −→ R, i = 1, 2 be two functions of class C1.
Modulo a direct similarity of R3, there exists a unique Frenet curve with the shape curvature f1

and the shape torsion f2.
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Let c : I −→ R3 be a Frenet curve of class C3 defined in an open interval I ⊂ R
and parameterized by a spherical arc length parameter σ. Then, the shape of c is the pair
(k̃1(σ), k̃2(σ)), where k̃i : I −→ R (i = 1, 2) are functions of class C1. From Theorem 10.1
we have that the curve c is determined uniquely by its shape up to a direct similarity of
the Euclidean space. We shall construct space curves with given shape. First we fix a right -
handed orthonormal triad of vectors e0

1, e
0
2, e

0
3. The unique solution of the system of differential

equations
dγ

dσ
= t(σ),

dt

dσ
= −γ(σ) + k̃2(σ)p(σ),

dp

dσ
= −k̃2(σ)t(σ) (11)

with initial conditions e0
1, e

0
2, e

0
3, determine a spherical curve γ = γ(σ) such that γ(σ0) = e0

1

for some σ0 ∈ I. Let µ(σ) =
∫ σ
σ1
k̃1(σ) dσ for fixed σ1 ∈ I. We find that the curve

c(σ) = c0 +

∫ σ

σ0

eµ(σ)γ(σ) dσ (12)

has a shape (k̃1(σ), k̃2(σ)) and passes through a point c0 = c(σ0). In simple cases the system
(11) and the equation (12) can be solved explicitly, but in the general case only a numerical
solution is possible.

Figure 2. Figure 3. Figure 4.

A lot of computer programmes can be used effectively to determine numerically a space
curve with a given shape and then to construct it. The above figure illustrate space curves with
shapes (b, aσ)(see Fig. 2.), (bσ, a)(see Fig. 3.) and (bσ, aσ)(see Fig. 4.), where a, b are nonzero
real constants.

11 Möbius invariants
Let S2 : (x1)2 + (x2)2 + (x3)2 = 1 be the unit sphere in R3, centered at the origin O and
l(x1, x2, x3), x1 6= 1 be the position vector of an arbitrary point in S2, different from the pole
P (1, 0, 0).

The group of rigid motions on the sphere S2 coincides with the group of rotations SO(3) in
R3 that preserve the sphere S2. This group induces on the plane via the stereographic projection
π a subgroup F0 of the Möbius group Möb(2). We identify R2 ∼= C, where C is the field of
complex numbers, and denote C ∪∞ by C∞.

The elements of the subgroup F0 ⊂M öb(2) corresponding of the group SO(3) of rotations
on the sphere S2 via the stereographic projection π are the following transformations:

a) rotations in C, represented by the equation f(z) = a.z, ‖a‖ = 1, a, z ∈ C;
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b) möbius transformations in C∞, represented by the equation

f(z) =
a.z + b

−b.z + a
, ‖a‖2 + ‖b‖2 = 1, a, b, z ∈ C, b 6= 0.

Definition 11.1. ([3]) Let c : u = u(σ) be a Frenet plane curve, parameterized by an arc
length parameter σ of the spherical image γ = π−1(c), where π−1 is the reverse stereographic
projection π−1 : R2 → S2 \ {P}. We denote by M = M(σ) the function

M(σ) =
1

µ
.κ2(σ)− 1 + 2. (Ss) (σ), (13)

where s is an arc length function of c and κ = κ(σ) is the Euclidean curvature of c.

It is clear that the function, defined by (13), is an invariant under the group F0. Recently,
Encheva proved the following two results.

Theorem 11.1 (Uniqueness Theorem, [3]). Let I ⊂ R be an open interval and let ci : I −→ R2,
i = 1, 2 be two Frenet curves of the class C2, parameterized by the same arc length parameter σ
of their stereographic images on the sphere S2. Assume that c1 and c2 have the same invariants
Mi = Mi(σ), i = 1, 2 defined by (13), i.e. M1(σ) = M2(σ) for any σ ∈ I. Then, there exists a
transformation f ∈ F0 such that c2 = f ◦ c1.

Theorem 11.2 (Existence Theorem, [3]). Let g : I −→ R be a function of class C∞. Let e0
1, e

0
2

be right-handed orthonormal pair of vectors at a point c0 in the plane R2. There exists a unique
Frenet curve c : I −→ R2, which satisfies the conditions:
(i) there is σ0 ∈ I such that c(σ0) = c0 and the Frenet frame of c at c0 is {e01, e02}.
(ii) For any σ ∈ I, M(σ) = g2(σ).

Example 11.1. Let M(σ) = cos2 σ, c0 = (1, 0), e0
1 = (0, 1) ∈ R2. A plane curve with a

conformal invariant M(σ) = cos2 σ and its corresponding spherical curve under stereographic
projection π are obtained by Mathematica and represented on Fig. 5.

Figure 5.

Other examples are considered in the demonstration [4], published on the site of Wolfram
Demonstration Project. Moreover, it is shown here, how the curve depends on the parameters
of the three-parameter subgroup F0 of the Möbius group in the plane.

12 Image processing and pattern recognition
One of the main and interesting problems of information science is clarification of how animals’
eyes and brain recognize objects in the real world. Practice shows that they successfully
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cope with this problem and recognize objects at different locations, of different views and
illumination, and with different degrees of blurring. But how is it done by the brain? How do
we see? How do we recognize moving and changing objects of the surrounding world? A moving
object is fixed in the retina as a sequence of different images (Fig. 6).

Figure 6.

As in the famous aphorism of Heraclitus, who pointed out that one cannot step into
the same river twice, we literally never see the same object twice. No individual image allows
reaching a conclusion about the true shape of the object. This means that a set of sequential
images appearing in the retina must contain a constant “something,” thanks to which we see
and recognize the object as a whole. This constant “something” is called invariant. For example,
all letters ‘F’ in Fig. 7 we interpret as the same for different geometric distortions. This fact
means that all geometrically

Figure 7. Geometrical distorted versa of letter ”F”.

distorted letters ‘F’ contain invariant features, which are not changed, when the shape of ‘F’
is changed. Our brain can extract these invariant features. In Fig. 8 we see hyperbolic (non-
Euclidean) motions of grey-level mice and color fish.

Figure 8. Non-Euclidean motions
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All transformed figures are interpreted as being the same. This fact means that all figures
contain invariant features with respect to hyperbolic motions (and color transformations), and
our brain can extract these invariant features from images, too. So, we see, we live in 3D
Euclidean space but our brain can calculate invariants of images with respect to non-Euclidean
transformations. In order for an artificial pattern recognition system to perform in the same
way as any biological visual system, the recognition result should be invariant with respect to
various transformation groups of the patterns such as translation, rotation, size variation, and
change in illumination and color. Labunets describes in [16] new methods of image recognition
based on an algebraic-geometric theory of invariants. In this approach, each color or multicolor
pixel is considered not as a kD vector, but as a kD hypercomplex number (k is the number
of image spectral channels). Changes in the surrounding world which cause object shape and
color transformations are treated not as matrix transforms, but as the action of some Clifford
numbers in physical and perceptual spaces.

We suppose that a brain calculates some hypercomplex-valued invariants of an image when
recognizing it. Hypercomplex algebras generalize the algebras of complex numbers, quaternions
and octonions. Of course, the algebraic nature of hypercomplex numbers must correspond to the
spaces with respect to geometrically perceivable properties. For recognition of 2D, 3D and nD
images we turn the spaces R2,R3 and Rn into corresponding algebras of hypercomplex numbers.
Let “small” nD space Rn be spanned by the orthonormal basis of n space hyperimaginary units
Ii, i = 1, 2, . . . n. We assume

I2
i =


+1 for i = 1, 2, . . . , p,
−1 for i = p+ 1, p+ 2, . . . , p+ q,
0 for i = p+ q + 1, p+ q + 2, . . . , p+ q + r = n,

and IiIj = −IjIi. Now, we we construct the “big” 2nD hypercomplex space R2n . Let b =
(b1, . . . , bn) ∈ Bn2 be an arbitrary n-bit vector, where bi ∈ B2 = {0, 1} and Bn2 is the nD Boolean
algebra. Let us introduce Ib = Ib11 I

b2
2 · · · Ibnn . Then 2n elements Ib form a basis of 2nD space,

i.e., for all C ∈ R2n we have C =
∑

b∈Bn
2
cbI

b. If C1, C2 ∈ R2n , then we can define their product
C1C2. There are 3n possibilities for I2

i = +1, 0,−1,∀i = 1, . . . , n. Every possibility generates
one algebra. Therefore, the space R2n with 3n rules of the multiplication forms 3n different 2nD
algebras, which are called the space Clifford algebras. We denote these algebras by ASp(p,q,r)2n .

All even Clifford numbers E0 ∈ A{0}2n of unit modulus represent the rotation group of the
corresponding space GRSp(p,q,r)

n , which is called the spinor group and is denoted by Spin(A
Sp(p,q,r)
2n ).

Generalized complex numbers and quaternions of unit modulus have the forms: e0 = eIϕ =
cosϕ+ I sinϕ,Q0 = eu0ϕ = cosϕ+ u0 sinϕ, where cosϕ and sinϕ are trigonometric functions
in the corresponding nD GRSp(p,q,r)

n -geometries, ϕ is a rotation angle around the vector-valued
quaternion u0 of unit modulus (|u0| = 1, u0 = −u0). Clifford numbers E0 ∈ Spin(A

Sp(p,q,r)
2n ) with

unit modulus have the analogous form E0 = eu0ϕ = cosϕ+u0 sinϕ for the appropriate bivector
u0.

Theorem 12.1. (Lasenby, Doran, Gull [17])) All motions in 2D, 3D and nD spaces GRSp(p,q,r)
2 ,

GRSp(p,q,r)
3 , GRSp(p,q,r)

n are represented in the forms:

z′ = e0ze0 + w, x′ = Q0xQ−1
0 + w, x′ = E0xE−1

0 + w.

If |e0|, |Q0|, |E0| 6= 0, then the latter transformations form the “small” affine groups
Aff(GRSp(p,q,r)

2 ), Aff(GRSp(p,q,r)
3 ), Aff(GRSp(p,q,r)

n ), respectively.
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Using this theorem, we can describe geometric distortions of images in the language of
Clifford algebras. These distortions will be caused by: 1) nD translations x −→ x + w; 2) nD
rotations x −→ E0(x + w)E−1

0 ; 3) dilatation: x −→ λx, where λ ∈ R+. If f(x) is an initial
image and λE0wf(q) is its distorted version, then λE0wf(x) = f(E0(x+w)E−1

0 ), where λ is a scale
factor, x,w ∈ GRSp(p,q,r)

n . We suppose that the human brain can use the spinor and “small”
affine groups for mental rotations (see Fig. 9) and motions of images (for example, in a dream),
which are contained in the brain memory on the so-called “screen of mind.”

Figure 9. Rotations in a) 2D Euclidean space GRSp(2,0,0)
2 , b) 2D Minkowskian space GRSp(1,1,0)

2

and c) 2D Galilean space GRSp(1,0,1)
2 .
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[6] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and
Hasse-Witt invariants, J. Reine Angew. Math. 360 (1985), 84–123.
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