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ABSTRACT: New forms of trial fields for classical variational principles in the context of elec-
trical conductivity are introduced. They generalize to an arbitrary random medium, not necessarily
with discrete structure, of the trial fields of Phan-Thien and Milton (1982) introduced by them for an
N-phase material with a periodic structure and leading to finding of three-point bounds on the effective
conductivity of the composite. These new forms of their trial fields are used for symmetric cell materials
and as a result simple formulas are obtained for the corresponding bounds on the effective conductivity
of such materials.
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1 Introduction
The problem of finding the effective physical properties of a heterogeneous medium requires

knowledge of the complete statistical description of the medium [1]. In practice, however, we have
only the information given by the first few correlation functions of the medium. Therefore, the
only thing that can be rigourously done is to obtain bounds on these properties using this limited
information. In the context of electrical conductivity, we will briefly consider finding variational
bounds using only the first k-point moments up to k = 3 of the scalar random conductivity field
σ(x) of a d-dimensional medium at d = 2, 3. These bounds are referred to as three-point bounds.

We will assume that σ(x) is a statistically homogeneous random field and relates the local
current density field J(x) with the local electric field E(x) in the medium according to Ohm’s
law:

(1) J(x) = σ(x)E(x),

We will also assume that the medium is macroscopically isotropic, i.e. its effective conductivity
σ∗, usually defined by the averaged Ohm’s law:

(2) 〈J(x)〉 = σ∗〈E(x)〉,

is a scalar quantity; the brackets 〈 〉, hereafter, denote ensemble averaging.
The electric field is irrotational: ∇ × E(x) = 0, i.e. E(x) = −∇φ(x), where φ(x) is

the electrical potential, and the current density field, in the absence of internal current sources, is
solenoidal:

(3) ∇ · J(x) = 0.

The problem of finding the solution φ(x) of this equation under prescribed constant-average
electric field, 〈E(x)〉 = E0, is equivalent to the classical energy variational principle, according to
which among all the statistically homogeneous irrotational fields Ê(x) for which 〈Ê(x)〉 = E0,
the functional

(4) W
[
Ê(·)

]
=

1

2
〈σ(x)Ê(x) · Ê(x)〉

*Partially supported by Scientific Research Grant RD-08-73/23.01.2020 of Shumen University.

- 35 -



Tsvyatkov Kr.

is stationary and minimum for this solution, i.e. for the true electric field E(x) in the medium; so

that minW =
1

2
σ∗E2

0 , E2
0 = E0 · E0. The ergodic hypothesis for all statistically homogeneous

fields is adopted.
The solution E(x) can be formally found in the form of a perturbation series for a weakly

inhomogeneous medium. This series, truncated after its first integral term, forms the field

(5) Ê
(b)

(x) = E0 + αE0 ·
∫
∇∇G(x− y)σ′(y) dy,

where G(x) is the Green function for the Laplace operator in Rd, i.e. G(x) = 1/4π|x| for d = 3
or G(x) = − ln |x|/2π for d = 2, and α = 1/〈σ〉; hereafter, Θ′(x) = Θ(x) − 〈Θ(x)〉 is the
fluctuation of a random field Θ(x) about its mean value 〈Θ(x)〉.

In fact, Beran[2] adopted α as an adjustable parameter in (5) and then considered the classical

variational principle on the fields Ê
(b)

(x). The energy functional (4), when restricted over this
class of trial fields, becomes a quadratic function of α, whose minimization brings forth an upper
bound on σ∗:

(6) σ∗ ≤ σ(b)
u , σ(b)

u = 〈σ〉

{
1− m2

2σ/d
2

m2σ/d+ A
(3)
σ m3σ

}
,

where m2σ = 〈σ′2〉/〈σ〉2, m3σ = 〈σ′3〉/〈σ〉3, and

(7) A(3)
σ =

1

d〈σ′3〉

∫∫
Mσ

3 (z1, z2)∇∇G(z1) : ∇∇G(z2) dz1dz2

is a dimensionless statistical parameter for the medium, depending on the three-point moment
Mσ

3 (z1, z2) = 〈σ′(0)σ′(z1)σ
′(z2)〉 for the conductivity field σ(x); the colon denotes contraction

with respect to two pairs of indices.
We are now introducing the more general class of trial fields

(8) Ê(x) = E0 +E0 ·
∫
∇∇G(x− y)λ′(σ(y)) dy,

where λ(σ) is a varying non-random function of the achieved conductivity values and the field
λ′(σ(x)) is the fluctuation of the random field λ(σ(x)). Obviously, if λ(σ) = α σ with an ad-
justable constant α, the fields (8) coincide with the Beran’s trial fields (5).

Let us assume only for a moment that the medium is an N -phase composite material. Thus
each phase is characterized by its constant conductivity σi and its indicator function Ωi(x), taking
the value 1 if x ∈ i-th phase, and 0 otherwise, where i = 1, . . . , N . Then conductivity field σ(x)
is represented as a step function:

(9) σ(x) = σ1Ω1(x) + · · ·+ σNΩN(x)

and, according to the definition of the function λ(σ), the field λ(σ(x)) has the same form:

(10) λ(σ(x)) = α1Ω1(x) + · · ·+ αNΩN(x),
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where αi = λ(σi), i = 1, . . . , N . Therefore, for N -phase medium, the general trial fields (8) can
be represented in the form

(11) Ê(x) = E0 +E0 ·
N∑
i=i

αi

∫
∇∇G(x− y)Ω′i(y) dy,

where α = (α1, . . . , αN) is un adjustable constant vector. Keeping in mind that the Fourier trans-

form F maps the integral terms in (11) into the tensors
kk

k2
ωi(k) in the case of three space dimen-

sions, where ωi(k) = F [Ω′i(x)], i = 1, . . . , N , we note that the fields (11) are the same trial fields
introduced through their Fourier series expansions by Phan-Thien and Milton [3] for an N -phase
material with periodic internal structure, when the vector E0 is chosen to be the unit vector in
the x-direction. Thus, it turned out that the trial fields (8), introduced here, are a generalization
of the trial fields of Phan-Tien and Milton for an arbitrary statistically homogeneous medium, as
well as for a two-dimensional medium. By minimizing the restriction of the energy functional (4)
on their trial fields with respect to the vector α, they obtained an upper bound for σ∗ in a form
involving matrix multiplications, the thre-point statistics of the medium being represented by a
three-dimensional matrix of N(N − 1)2/2 different geometrical parameters

(12) Aabc =

∫∫
〈Ω′a(0)Ω′b(z1)Ω

′
c(z2)〉∇∇G(z1) : ∇∇G(z2) dz1dz2, a, b, c = 1, . . . , N.

It is worth noting that Ω1(x) + · · ·+ ΩN(x) = 1, whence Ω′2(x) = −Ω′1(x) at N = 2. Taking into
account also (9), we conclude that for a two-phase medium the trial fields (11) are reduced to the
Beran’s fields (5).

Referring to the form (11) of the trial fields of Phan-Thien and Milton [3], it can be easily
shown that the trial fields of Pham [4] coincide with them. Therefore, the corresponding bounds
obtained by Pham [4] again in a form involving matrix multiplications, but with other statistical
geometrical parameters, coincide with the bounds of Phan-Thien and Milton. This conclusion is in
line with the finding of Pham [4] that by using computer programs one can check that his bounds
in three-dimensional case (d = 3) agree with those of Phan-Thien and Milton [3].

While minimizing the energy functional (4) on the class of trial fields (11) is reduced to
solving a linear system with respect to the multipliers α1, . . . , αN , the problem of minimizing it
on the class of fields (8) for un arbitrary, not necessarily medium with a discrete structure, comes
down to solving the corresponding Euler-Lagrange equation, which seems to be a complicated,
albeit linear, integral equation with respect to the function λ(σ). That is why here we will turn
our attention to the restriction of the energy functional on this more general class of trial fields for
symmetric cell materials, which seems to be the first meaningful class of materials for which the
Beran bounds [2] are considered, starting with Miller’s work [5].

2 Symmetric cell materials and Miller geometrical parameter
The symmetric cell material is constructed as follows. The space is divided into an infinite

number of cells in such a way that the resulting geometric structure is statistically homogeneous.
In this division, the shapes and sizes of the cells may be different. Then each cell is randomly
assigned a constant conductivity σ with some probability density P (σ), the value of which does
not depend on either the geometry of the cell or the assigned conductivities of the surrounding
cells. A classic example of such material is the random (two- or three-dimensional) chessboard.
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Another example is the medium obtained when space is divided only into spherical cells whose
radii vary from a certain finite to the infinitesimally small value.

It follows from the assumed statistical independence of cell conductivities that [6]

(13) 〈σ′(r1)σ′(r2)σ′(r3)〉 = 〈σ′3〉 g3(z1, z2, z2),

where g3(z1, z2, z2) is the probability that all three points r1, r2, and r3 fall into the same cell.
Due to the special representation (13), the Beran statistical parameter A(3)

σ in (7) is equal to the
geometrical parameter

(14) G =
1

d

∫∫
g3(z,w)∇∇G(z1) : ∇∇G(z2) dz1dz2,

introduced and denoted by G by Miller [5], who considered the Beran bounds for a two-phase
medium. He showed that the parameter G does not depend on the sizes and relative positions
of the cells, but only on their shapes. Hori [6] expressed the parameter G for a material with
an ellipsoidal shape of the cells (with uniform random orientations) through their depolarization
factors Li, i = 1, 2, 3, and also introduced tensor A(3) generalizing G for the case when the
medium is not statistically isotropic. The values of the parameter G for some cell shapes, more
complex constructions of cell materials, and other known results concerning them, the reader can
find in the books of Milton [7, ch. 15] and Torquato [8, ch. 8, 22] and the references in them.

3 Three-point bounds for cell materials
We will now consider deriving un upper bound on the effective conductivity σ∗ by using

the classical energy principle on the class of trial fields (8) and a lower bound by using its dual
classical variational principle on the class of corresponding to them trial fields.

3.1 Upper bound
According to the classical energy principle, the inequality

(15) σ∗E0 ·E0 ≤ W̃ [λ(·)]

is hold, where W̃ [λ(·)] is the restriction of the energy functional (4) on the class of trial fields (8).
The functional W̃ can be written in the form

(16) W̃ [λ(·)] = E0 · Ũ [λ(·)] ·E0,

where

(17) Ũ [λ(·)] = 〈σ〉I + 2

∫
∇∇G(z)〈σ′(0)λ′(σ(z))〉 dz

+ 〈σ〉
∫∫
〈λ′(σ(z1))λ

′(σ(z2))〉∇∇G(z1) · ∇∇G(z2) dz1dz2

+

∫∫
〈σ′(0)λ′(σ(z1))λ

′(σ(z2))〉∇∇G(z1) · ∇∇G(z2) dz1dz2,
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I being the unit tensor. For the second integral we find∫∫
〈λ′(σ(z1))λ

′(σ(z2))〉∇∇G(z1) · ∇∇G(z2) dz1dz2(18)

= −
∫
∇∇G(z)〈λ′(σ(0))λ′(σ(z))〉 dz

after four integrations by parts. To arrive at this equation, we relied on the statistical homogeneity
of the field λ′(σ(x)), the basic equation 4G(x) = −δ(x) for the Green function, δ(x) being the
Dirac delta function, and the assumption of no long-range correlations, which is certainly fulfilled
for symmetric cell materials.

By choosing E0 to be the units vectors along the coordinate axes, from (15)–(18) and the
equation tr [∇∇G(x)] = 4G(x) we find

(19) σ∗ ≤ σu, σu = U [λ(·)] ,

where U = tr Ũ , i.e.

(20) U [λ(·)] = 〈σ〉 − 2

d
〈σ′λ′(σ)〉+

1

d
〈σ〉〈λ′2(σ)〉+ A

(3)
λ 〈σ

′3〉,

where

(21) A
(3)
λ =

1

d〈σ′3〉

∫∫
〈σ′(0)λ′(σ(z1))λ

′(σ(z2))〉∇∇G(z1) : ∇∇G(z2) dz1dz2.

As already mentioned, the Euler-Lagrange equation for the functional (20) seems difficult to
solve for arbitrary medium. If we replace λ(σ) with ασ in (20) and minimize the obtained function
of the multiplier α, we will immediately get the upper Beran bound (6).

Since the field λ(σ(x)) has the same statistical properties as the conductivity field σ(x), for
symmetric cell material the third moment involved in the integral in (21) is expressed analogously
to that in (13), i.e.

(22) 〈σ′(0)λ′(σ(z1))λ
′(σ(z2))〉 = 〈σ′(0)λ′2(σ(0))〉 g3(0, z1, z2),

and therefore A(3)
λ = 〈σ′λ′2(σ)〉G/〈σ′3〉, where G is the geometric Miller parameter (14).

Let us remember that the energy functional must be considered for functions λ(σ) subjected
to the constraint

(23) 〈λ′(σ(x))〉 = λ(σ(x))− 〈λ(σ(x))〉 = 0.

It turns out to be more convenient to consider the functional (20) with an argument the functional

(24) λ′(σ) = λ(σ)− 〈λ(σ)〉 = λ(σ)−
∫
λ(σ)P (σ) dσ,

instead of the function λ(σ), and to introduce the Lagrangian functional

L [λ′(·),Λ] = U [λ′(·)] + Λ〈λ′(σ(x))〉(25)

= 〈σ〉 − 2

d
〈σ′λ′(σ)〉+

1

d
〈σ〉〈λ′2(σ)〉+ 〈σ′λ′2(σ)〉G+ Λ〈λ′(σ(x))〉
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with unknown Lagrange multiplier Λ. The Euler-Lagrange equation for this functional is

(26) −1

d
σ′ +

1

d
〈σ〉λ′(σ) + σ′λ′(σ)G+

1

2
Λ = 0,

whose averaging when using the constraint (23) gives Λ = −2 〈σ′λ′(σ)〉G.
Multiplying now the equation (26) by λ′(σ) and then averaging it, we can express the

quadratic part of the functional (20) with its linear one, and thus we get

(27) minU [λ(·)] = 〈σ〉 − 1

d
〈σ′λ′(σ)〉,

where λ′(σ) is the solution of the equation (26). Expressing now the functional λ′(σ) from this
equation, we find

(28) λ′(σ) =
1

d

σ′

σ̃
+

1

σ̃
〈σ′λ′(σ)〉G,

where σ̃ = 〈σ〉/d + Gσ′. After averaging now the equation (28) under the constraint (23), we get
the linear term

(29) 〈σ′λ′(σ)〉 =
1

d

〈σ′/σ̃〉
〈1/σ̃〉G

.

Finally, taking into account (19), (27), and (29), for the best upper bound on σ∗ we obtain the
formula

(30) σu = 〈σ〉
{

1 + (1− αu(G))
Bu

1− Lu(G)Bu

}
,

where

(31) Bu =

〈
σ(x)− 〈σ〉

〈σ〉+ Lu(G) (σ(x)− 〈σ〉)

〉
, αu(G) =

d2G− 1

d2G
, Lu(G) = dG.

3.2 Lower bound
To derive lower bounds on the effective conductivity σ∗ we use the complementary energy

principle, according to which among all the statistically homogeneous solenoidal trial fields Ĵ(x)

with prescribed constant-average value, 〈Ĵ(x)〉 = J0, the functional

(32) W
[
Ĵ(·)

]
=

1

2
〈ρ(x)Ĵ(x) · Ĵ(x)〉

is stationary and minimum for the true current density field J(x) in the medium, so that minW =
1

2
ρ∗J2

0 , J2
0 = J0 · J0, where ρ(x) = 1/σ(x) and ρ∗ = 1/σ∗ are the local and effective resistivity

of the medium, respectively.
For this variational principle, we introduce the trial fields

Ĵ(x) = J0 +

∫
∇× [J0 ×∇G(x− y)]µ′(σ(y)) dy(33)

= J0 + µ′(σ(x))J0 + J0 ·
∫
∇∇G(x− y)µ′(σ(y)) dy
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– the counterpart of the fields (8), where µ(σ) is a varying non-random function of the achieved
conductivity values and the field µ′(σ(x)) is the fluctuation of the random field µ(σ(x)). The
derivation of the best lower bound on σ∗ is similar to that of the upper bound, so we will omit
some details.

After substituting the trial field (33) into the functional (32), we will get an expression for an
upper bound ρu on ρ∗:

(34) ρ∗ ≤ ρu, ρu = U [µ(·)] ,

where

(35) U [µ(·)] = 〈ρ〉+ 2
d− 1

d
〈ρµ′(σ)〉+

d− 2

d
〈ρµ′2(σ)〉+

1

d
〈ρ〉〈µ′2(σ)〉+ A(3)

µ 〈ρ′3〉

is a functional involving the statistical parameter

(36) A(3)
µ =

1

d〈ρ′3〉

∫∫
〈ρ′(0)µ′(σ(z1))µ

′(σ(z2))〉∇∇G(z1) : ∇∇G(z2) dz1dz2.

If we replace µ(σ) with ασ in (35) and minimize the obtained quadratic function of α, we will get
the lower bound σ` = 1/ρu on σ∗ of Beran [2].

For symmetric cell materials, A(3)
µ = 〈ρ′µ′2(σ)〉G/〈ρ′3〉, where G is again the geometric

Miller parameter (14). The corresponding Lagrangian functional

L [µ′(·),Λ] = U [µ′(·)] + Λ〈µ′(σ(x))〉,(37)

considered under the the constraint 〈µ′(σ(x))〉 = 0, leads to finding the following equation for the
functional µ′(σ):

(38)
d− 1

d
ρ′ +

d− 1

d
〈ρ〉µ′(σ) +

(
d− 2

d
+G

)
[ρ′µ′(σ)− 〈ρ′µ′(σ)〉] = 0.

For the best upper bound ρu on ρ∗, we find

(39) ρu = 〈ρ〉+
(d− 1)2

d(dG+ d− 2)

〈ρ′/ρ̃〉
〈1/ρ̃〉

,

where ρ̃ = (d − 1)〈ρ〉 + (dG + d − 2)ρ′. Finally, for the best lower bound σ` = 1/ρu on σ∗, we
obtain the formula

(40) σ` = σH

{
1 + (1− α`(G))

B`

1− (L`(G)− α`(G)) B`

}
,

where

(41) B` =

〈
σ(x)− σH

σH + L`(G) (σ(x)− σH)

〉
, α`(G) =

d2G− 1

d(dG+ d− 2)
, L`(G) =

1− dG
d− 1

,

and σH = 1/〈ρ〉 = 〈σ−1〉−1 is the harmonic mean of the conductivity σ.
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4 Concluding remarks
The parameters Bu and B` involved in formulas (30) and (40) for the bounds σu and σ`, re-

spectively, are easy to calculate for aN -phase medium and some simple probability densities P (σ)
(e.g., for a uniform or triangular distribution of σ). As expected, for a three-phase cell material,
the new formulas (30) and (40) are equivalent to the explicit formulas given in [3]. In the case of
spherical cell material [5–8], G = 1/d2, whence we find αu = α` = 0 and Lu = L` = 1/d – the
depolarization factor of a sphere. Then the quantities Bu and B` represent the average polarizabil-
ity of the spheres of the material with respect to the medium with conductivity the arithmetic mean
σA = 〈σ〉 and the geometric mean σH , respectively. For cells with a non-spherical shape, polar-
izability is a tensor and therefore cannot be so clearly reflected in our formulas for macroscopic
isotropic materials. Consideration of statistical anisotropic media will lead to a clearer presence of
cell polarizability in the corresponding formulas for effective conductivity. The relevant study will
be done elsewhere.
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