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ABSTRACT: In this paper we present results concerning commuting
nonselfadjoint operators and corresponding generalized open systems and ma-
trix wave equations, using LivSic nonselfadjoint operator theory. These results
describe the existence and uniqueness of the solutions of the boundary value
problem for solutions of the matrix wave equations for output of the general-
ized open system in the case of n-tuples of commuting nonselfadjoint bounded
operators, when one of them belongs to a larger class of nonselfadjoint nondis-
sipative operators.
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1 Preliminary results

In this section we will present some preliminary results concern-
ing commuting nonselfadjoint operators generating generalized open
systems, corresponding collective motions, and matrix wave equations
(considered by G.S. Borisova and K.P. Kirchev in [4]). These essential
results are obtained in the case of n-tuples of commuting nonselfad-
joint bounded operators when one of them belongs to a larger class of
nondissipative operators, presented as couplings of dissipative and an-
tidissipative operators and they are obtained in [3].
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Let us consider commuting nonselfadjoint bounded linear opera-
tors Ay,..., Ay (AgAs = AsAg, kK = 1,...,n) in a Hilbert space H.
Let these operators be embedded in a commutative regular colligation

X = (A17~-- 7An;H7(I)7E;O-17"' 70-717{7]{:8}’{%7]98}7

M kos=1,...,n)

where E is another Hilbert space, ® is a bounded linear mapping of H
into E, 01,092, ...,0n, {Vks}> {ks}> (k,s = 1,2,...,n) are bounded
linear selfadjoint operators in E (where v = 7, = —7si) and they
satisfy the next conditions:

) (A — A45) /i = D" 0, P,

3) 0sPA; — o) PAL = s P,

4) Vs = Vks + i(0, PP 05 — 0, PD*0y,)

for k,s = 1,2,...,n. Instead of the term "regular colligation" one can

use the term "vessel”, that has been coined in [11].
In what follows, we assume that dim ¥ < oo (which includes the

n
most of important cases) and () ker o, = {0}. If range ® = E, the

colligation X is called a strictkcollligation.

The system-theoretic interpretation of n-operator colligation leads
to an open n-dimensional system. We consider the generalized open
system (introduced by G.S. Borisova and K.P. Kirchev in [4]) from the
form



Commuting nonselfadjoint operators and wave equations

where © = (z1,...,2,), f(2)|r, = fo(zr) Ty =ORY), €1,...,64 €
C are constants and the vector functions

U((L‘) = U(fL‘l,l‘Q, <o 7xn)7 'U(x) = 'U(xl,.’lfg, R 7$n>7

f(x) = f(z1,22,...,25)

are the input, the output, and the internal state of the open system (5).
(In the cases, considered by M.S. LivSic, the open systems are when
g1 =---=¢e,=1.)

Direct calculations show ([4], Theorem 6.1) that the system (5)
has a solution if the function fo(z) on I'; satisfies the equations from
(5) and the vector function u(x) is a solution of the system

1 1
(6) o (_Z(9u> — 0 (—i 6u> + Y = 0,

€s 0T €k 0Tk

(k,s =1,2,...,n),ie. following M.S. Livsic and Y. Avishai [12] u(z)
satisfies the matrix wave equations (6).

The system (5) is over determined in the case when n > 3. To
avoid this one has to consider the additional conditions for the operators
{0k, Vks}> k,s = 1,2,...,n, when det 0,, # 0. These conditions have
been introduced by V. Zolotarev in the paper [14] and have the form:

1 1

I 1
o topo tos = 0, oso, oy,
—1 —1 _ —1 -1
(7) Opn YknOp Ysn = Op VsnOp Ykn
-1 -1 —1 -1 _
Un Ukan 'ysn+o'n 'anan O-S -

_ —1 —1 —1 —1
=0y, YknOp Vsn t 0n YsnOp Vkn

k,s =1,2,...,n — 1. The conditions (7) follow from the equalities of
. . . . 2 2
the mixed partial derivatives 81‘1 gxg = aﬁ o = k,s=1,2,...,n. Then

from (6) it follows that
3) ks = OO0 Yo — Ok Ysn, kys=1,2,...,n.

Consequently, when o, is invertible matrix, the commutative regular
colligation is determined by the matrices {0} }7, {vkn}7—1, satisfying
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the conditions (7) and other operators s, k, s = 1,2, ..., n are defined
by the equalities (8) (see [4]).

The selfadjoint operators s, defined by (4), satisfy analogous
relations as ys (k, s = 1,2,...,n),i.e.

Vos = Vs = — sk,  OkPA; — 0sPA) = Y35 P,

B P PO | R P 1 1
Oy OkO, Ysn + Op YenOp Os = Op 050, Ven + 0y YsnOp Ok,
B P P PUR P o~ _ _ _1x s

On VknOp Vsn = O0p VsnOp Vkn Yks = 050y Vkn — OkOp Ysn

Now in the case when n > 3 we consider the colligation from the form

X = (Ala"'7AR;H7®7E;017"‘7Una{’ykn}7{5kn}a

©) k=1,2,...,n—1)

instead of the commuting regular colligation (1).

Next, if the input u(x) of the generalized open system (5), corre-
sponding to the commutative regular colligation (1), satisfies the matrix
wave equations (6), then the output v(z) from (5) satisfies the system
(or matrix wave equations)

1 1
(10) O (’L dv > — Os ( 8v> +A’Y/ksv = Oa

i—
Es 61'5 Ek 61’k

k,s=1,2,...,n (see [4], Theorem 6.2).

Let us consider the case when one of the operators A1, As, ..., A,
is a coupling of dissipative and antidissipative operators with real abso-
lutely continuous spectra (for example, A1) and €; = 1. (The operator
B is said to be a couling in a Hilbert space H, if B has the representation

(11) B=PBP + P BP, + P,BP;,

where P;, P» are orthogonal projectors in H) Without loss of generality
we can suppose that A; = B, where B is the triangular model of this
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coupling (introduced by G.S. Borisova in [1] and investigated by G.S.
Borisova and K.P. Kirchev in [6], [7]):

B (w) = a(w)f(w) — i | FEMES T (wyde-+
(12) v T
+ [ OEST (w)de + i [ €L (w)de,

where [ = (f1,f2,....[p) € H = LQ(A;(CP), A= [dV], L :
C" —C"detL#£0,L* =L, L=Jy—Jo+ S5+ 5%,

I, 0 (0 0 (00

r is the number of positive eigenvalues and m — 7 is the number of
negative eigenvalues of the matrix L, II(w) is a measurable p x m (1 <
p < m) matrix function on A, whose rows are linearly independent at
each point of a set of positive measure, the matrix function II(w) =
IT* (w) I (w) satisfies the conditions tr (w) = 1, (w)J; = JiIL(w),
[[TI(w1) — (we)|| < Clwy — we|** for all wy,wy € A for some
constant C' > 0, « is an appropriate constant with 0 < a3 < 1 (see
[6]), (where || || is the norm in C™) and the function @ : A — R
satisfies the conditions:

(i) the function (w) is continuous strictly increasing on A;

(ii) the inverse function o (u) of a(w) is absolutely continuous on
[a,b] (a = a(ad), b= ab));

(iii) the function ¢’(u) is continuous and satisfies the relation
lo’(u1) — o' (u2)| < Clug — u2|*?, (0 < ag < 1) for all uy, ug € [a, b]
and for some constant C' > 0.

The operator B from (12) satisfies the condition (B — B*)/i =
®* L, where the operator ® : H — H is defined by the equality

)
B f(w) = / f ()T (w)duw
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and B has the representation (11), P; f(w) =
Py f(w) = f(w)Il(w)J2Q(w), where Q(w

) is
function on A satisfying the condition IT(w)Q(w
The existence of the wave operators

N(w) J1Q(w) and
X

p smooth matrix

fw
)=

Wi(B*,B) =s— lim e*B ¢~@B

r—+o00

of the couple of operators (B, B*) as strong limits has been established
and their explicit form has been obtained in [6] and [2], i.e.

(14) Wi(B*,B)=s— lim "% e P =525,

r—+o00

The explicit form of the operators g; on the right hand side of the rela-
tion (14) for the operator B with triangular model (12) has been obtained
in [6] in the terms of the multiplicative integrals and the finite dimen-
sional analogue of the classical gamma function (introduced in [6]) and
presented by (16).

To avoid complications of writing we consider the case when
a(w) = w, i.e. the operator B has the form

Bf(w) = wf(w) — i | F(E)TI(E)STI*(w)de-+
(15) v o
+i J FOTE)STI (w)de +3 [ FETIE)LIT (w)d,

Then the operators §3F take the form (see, for example, [6], [4]).
(16)  Sef(w) = (Sef(w))Te, Sef=S1f+Sonf+ShH1,

Sif(w) = (S f (W) T (w) (o[t ) gy + Joft] =209 1) Q(w),

Tih = h(JyUsg (w) w1 @) F 5L @ P=1(1 4 iTT; () Ji +
+JoUsgr (w)w=M2(w) e E5 M2 (W) P=1( — iTT, (w))Jo ) II* (w)
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(Vh € C™),
z e 1)’“+1m1<v> v
Sk f(w f ©fe = e Ty,
SEf(w) = — f F(& FJF (w, b')dES,
w—8 - ﬁl(w)
- _1H1(U)d i f v—w dv
= 1 v—w 3
UQE( w) = 1_{% éfe )
w—4§ ’LU761:I (w)
~ = iy, 0 [ SRy dv
Usge(w) = lim [ e w ek ,
—0
(el — fe_ze e-DI=iT )z gy (2 > 0).

ﬁk( ) = J~,€H( w)Jy, = JI (W) (w) Jy,
fw) = f(w)Q* (w),

k =1, 2. In the last equality, m X p matrix function Q(w) is smooth on
A and satisfies the condition IT(w)Q(w) = I.

2 The main results

Let us consider commuting nonselfadjoint bounded linear oper-
ators Aq,..., A, with A1 = B, B from the form (15) and let they be
embedded in the regular colligation

= (A1 =B,...,Ap; H=L*A,CP),®, E = C™ {0}, {Fin},
E=1,...,n—1).

(Here the operators ®, {0}, {Vkn}, K = 1,...,n — 1, are stated as in
Section 1.)

Let H be the principal subspace of the colligation X from the
form (1) and A; = B, where B is the triangular model (12), i.e.

(17) H = span {AT" AT ® E, my,...,my, € NU{0}}.
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Let H be the set of solutions of the system (10)

(18)  wvp(x1,...,xn) = PetErmrAittenndn)p - p o H.
Let the operator U : H —5 H be defined by the equality

(19) Uh = ®elErmrdittenzndn)py vp(x1,29,...,2pn), h€ H.
From Theorem 6 [3] it follows that the equality

<vh1 (xla e ,$n), 'th(xl‘, e ,Z'n)> —
2l (e Ay, etmiA ) +
r1—+00
(20) +g” onh, (21,0, ...,0), 05, (21,0, ...,0))dr; =
(SiS+h17h2)+

00
+f awhl X1, ,...,0),Uh2(£€1,0,...,0))d$1,
0

defines a scalar product in the space H of solutions vp(x) from (18)
(hEﬁ,El =1,A; = B).

The equalities (20) and (vp,,vp,) = (hi,h2) imply also that
the operator U, defined by (19), is an isometric one and (Vhy, Vny) =
<Uh1, Uh2> = (hl, hg), hi,ho € H.

Following the introduced terminology by M.S. LivSic in [8] the
functions vy, (1, ..., 2,) and v (21,0, .. .,0) are said to be the output
representation and the mode of the element h € H correspondingly.

The case of two commuting nonselfadjoint operators (Ap, As)
where A; is a dissipative operator (i.e. (A1 — A7)/i > 0) with zero
limit lim (e?*141h,e®141p) = 0 (h € H) (i.e. the characteristic

T1—00
operator function W(1,0,z) = Wa,(2) is an inner function), e; =
go = 1, considered by M.S. Livsic in [8], and the case of n com-
muting nonselfadjoint operators (A, ..., A,), where A; is a dissipa-

tive operator with nonzero limit lim (e*141h, e®@141p) £ 0 (h €
1 —00
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H), considered by G.S. Borisova and K.P. Kirchev in [5], show that
a given mode v (1) determines uniquely the corresponding output rep-
resentation v(x1,...,x,) by the equations (10) and v(x1,0,...,0) =
vo(x1) in the region of an existence and uniqueness of the solutions
(see [13]). The case when n = 2, &1 = €2 = 1 for operators Aj, As
with det oo # 0 and with an assumption for an existence of the limit

lim (e™141h, e?*141]) has been considered in [11].
xr1—00

The next theorem solves a similar problem for the output and the
mode
vp(x1, o xn),  vp(0,...,0,2p)
correspondingly in the case of n operators (n > 3) with nonzero con-
stants €1,...,e,, When A; = B is a coupling of dissipative and an-
tidissipative operators with real absolutely continuous spectra, which
ensures the existence of the limit xETm(eixB f,e®B f), obtained ex-

plicitly in [6]. In this case we essentialy use the conditions of V.A.
Zolotarev [14].

We consider now the boundary value problem for solutions of the
partial differential equations

On (—Zi%> — Ok (—zi%) + Ygnv = 0,
2D (k=1,2,...,n—1)
v(0,...,0,2,) = vo(zy)

which are restrictions to R"™ of entire functions on C". We will denote by

(z1,...,2yn) the coordinates on C" and by (z1, ..., x,) the coordinates
on R™.
Theorem 1. Let 01,09, ...,0pn, {Ykn} (E=1,2,...,n—1)bem xm

hermitian matrices with det o,, # 0 and they satisfy the conditions of
V.A. Zolotarev (7). Then

1) ifv(zxy,...,x,) is a solution of
1 0 1 0 -
(22) Un——v—ak——v—&—iqqmvzo, k=1,2,...,n—1,
Ekawk Enaxn
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which is a restriction to R™ of entire function on C", and v(0, . ..,0,z) =
0forall x € R, then v(z1,...,x,) = 0;

2) if {v(x1,...,2p)} is a sequence of solutions of (22) which
are restrictions to R" of entire function on C", satisfying the condition
v (z,0,...,0) — g(x) as | = oo (Vx € R), where g(x) is a function
on R which is infinitely differentiable in a neighbourhood of 0 and there
exists a constant C such that

: vy d*g k
23 1 —(0,...,0) — —=—-(0) ) /C" | =0
o (g0 0= 5l0)
uniformly according to k, then there exists a solution v(xy,...,xy,) of
(22) which is a restriction to R™ of an entire function on C", such that
v(0,...,0,2) = g(x) forall x € R and the sequence vi(z1, ..., zn) —
v(z1,. .., 2n) as | — oo uniformly on compact subset on C".

Proof. At first we will prove /). Let v(z1, ..., x,) be a solution of (22)
and a restriction to R”™ of an entire function on C". Let

(24) v(0,...,0,x) =0 VzeR.

Now we have

ov

(25) 87’,1(

0,...,0,2) = 0.

Then from (22) we obtain that

26) éo’n%(o,,0,$)—$0k%(07707$)+
+ﬁknv(0, e 0,.%) =0

Vk = 1,2,...,n — 1). The equalities (24), (25) and the condition
det o, # 0 imply that

ov

(27) B

0,...,0,2) =0 Vk=1,2,....n—1, VzeR.
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Now from (25) and (22) we obtain that
o

(28) ——(0,...,0,2) =0 Vr,=1,2,..., VzeR
oz
and
1 ™ 1 omy ol
29 —Opn————— — — Ok~ + Ven—r— = 0.
(29) ex Oz 'Om,  en k@x:{b Thn Oxn !
Using (28), (24) and det o, # 0 the equality (29) takes the form
" v
300 ———(0,...,0,2)=0 Vr,=12,..., VzeR
Oz Oz
From the equality (29) after differentiating with respect to =, we obtain
1 ontly 1 0mtw - "y
31 —_————— —0p— =+ Yn=——— = 0.
GO oy gxyy 1022 *e, 0oy, Ok G o

Now from (30) and (31) it follows that

oty

32 e
(32) 81:2"71835%

0,...,0,2) =0 Vrn=1,2,....

Analogously to (32) by induction we obtain that
Oty
Qxy 0wk

Vrp,re=1,2,..,Vk=1,2,...,n— 1.
Now we consider the equality

(33) 0,...,0,2) =0

10 1 0 -
(34) o o= F e = 0.
€1 011 €n 0%y,
Then
1 0% 1 0% . Ov
35 — 00— ————— +Yp=—=0
( ) O-n€1 a$28$1 o1 En 8$28$n “Min 83)2
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and hence in the point (0, ..., 0, x) we obtain that
0%v
8x28x1

which follows from (33) and (27).
From the equality (26) we have

(36)

0,...,0,2) =0

1 0% 1 0% _  Ov
37 —— — O — Vin—=— =0
37 on Ek 8:5% Tk en 00T, + VYkn oxy,

and consequently from (30) and (27) it follows that

0%

(38) —
3&:,%

0,...,0,x) =0 Vk=1,2,...,n—1.

Now from (37) we obtain that (after differentiating with respect to )

1 9% 1 0% 0%
39 = e = 0.
(39 In er O3 Tk en 0z 01y, + VYkn ox?
Then (38) and (33) imply that
83
(40) 2 20,...,0,2) =0 Vk=1,2,...,n—1.
Ox,

Analogously by induction we obtain that

J"kv

@41) =—=(0,...,0,2) =0 Vk=1,2,....,n—1, Vrp=12,....
Oz,

From (35) (after differentiating with respect to x2) we have

1 A3 1 v 9%
) - Fin et = 0
(42) on 1 02201, 2011 o1 £, 0220z, 202, T Ox3
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and consequently using (38) and (30) it follows that

v

43 ———(0,...,0,z) = 0.
) 0x20x, @)
Analogously we obtain that

1 gr2tly 1 ortly _ 0"
44 —— 01— ———— + Yp=— =0
44 on g1 0252014 a1 en 025202y, *n 0xy?
and then

o2ty
45 ——(0,...,0,2) =0, Vro=1,2,....
45) 8:32203:1( z) "2

Next, after differentiating of (44) with respect to z,, it follows that

1 92ty 1 gretly o"v
46 R 5 -
46)  on 1 02, 0x5? 01 a1 en 0252022 *n 0, 0xh?
and then
or2t2y
47 —(0,...,0 =0 Vro =1,2,....
( ) axn(?ng axl ( ) )y Yy l’) ) T2 ) &y

The equality (47) follows from (33).
Analogously from (44) (after differentiating with respect to x,
and induction) we have

1 grztratly, 1 9rztratly, or2trny
48 - - 4 A, ———— =0
(48) Un€1 Oz 0w Oxq o1 €n 02} Ot *n Oz Oxh?
and hence
ar2+rn+1
(49) ! ,0,2) =0,  Vro,rp=1,2,....

Oz 0w 0xq 0,
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After differentiating of (48) with respect to x1 and using (49) we obtain
that

o 1 or2trnt2y, _ 1 oratrat2y +
50 Negq Ba:;” 8I;2 8:!2% 1 En 87;;2 8x;”+18x1
( ) —'—’LN ar2+rn+1,u -
Tin dzpOxn?0xr
and hence
8T2+7'7L+2v
(51) m(o,...,o,x):(), vr2,7’n:1727....
n 2 1

Analogously from (50) and (51) we obtain that

o 1 Or1tTr2+rny, o 1 arn+r2+r2+v+
Mgy awznax;2ax1 le, 8x228x2"+1
o i
™ ggrn Oxy? 690;171
and
Oritratraty,
(53) —8quax§28x2" yooy 0,2) =0, Vry,re,r,=1,2,....

Analogously to the equality (53) it can be obtained that
ark +Tj +7n v

(54) (0,
Ty O oxy

., 0,2) =0,

Vk #j, kjg=12,...,n—1,Vrg,rj,r, =1,2,.... Now from the
equality (48) (using differentiating with respect to x3) it follows that

g, L_oretmitly 1 gratratiy
55 Ne1 dxzdxp™ 81’;2 0x1 le, (93:381’;2 gxrnt!
(55) A gr2trmy 0
Tin Or30xy 0ry?

and then using (54) we obtain that
ar2+rn+2/0

(56) 83038:62”8:5‘2289:1( T
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Then analogously to obtaining (55) it follows that

1 gratratratly, 1 gratratrntly,

(57) Ney 8123 Oz, 83?22 321 : +1 en 8x£3 833;2 9xrntl +
—~ T3+ TN, _
+11n (9:16;3 oz 81’;2 0
and
gratratratly,
58 0,...,0,z)=0
) OxP 0wy Oxy?0xy )
Then from (57) we obtain that
Ot tTR,,
(59) 0,...,0,) =0
o arpargany 00
Vri,re,r3, 7y = 1,2,.... Analogously and consecutively we obtain
that
ar1+r2+...+rnv
(60) (0,...,0,2) =0
Oz Oxy? ... Oxyr T
Vri,ro,...,rpn =1,2,.. ..
But v(z1,...,x,) is a solution of (22) which is a restriction on
R™ of an entire function on C". Then the entire function v(z1, ..., z,)
has the representation
U(zh .. '7Zn) =
o 1 8T1+T2+”'+Tn1]
©61) a 71>0,..,70 >0 ritralral 90201 02y% .0z (0,.--,0,2).
- Tk Ty
2tz T ( — )

The equality (61) together with (60) implies that

v(z1, ..y 2n) =0, Y(z1,...,2,) € C"
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and consequently
(62) v(x1,...,xn) =0, Y(x1,...,2,) €R".

Now if vq (z1, ..., x,) and va(z1, .. ., x,) are different solutions
of the partial differential equations

63) Jni%—akéaaﬁ—i—ﬁknvzo, k=1,2,...,n—1,

v(0,...,0,2) = g(z)
ie. vi(z1,...,oy) and vao(x1,. .., z,) satisfy the conditions
v1(0,...,0,2) = g(x), ©v2(0,...,0,2) =g(x) VrxeR
then the relation (62) implies that
V1(T1, ., Tp) = V2(T1, .., Ty).

Hence if the system (63) has the solution, this solution is unique.

Now we will prove 2). Let {v(x1,...,2,)} be a sequence of
solutions of (22) satisfying the conditions in 2). Using the assumption
(23) it follows that for all € > 0 there exists /V such that for all [, s > N
the next inequality holds

At v,
Vk=1,2,...

After differentiation of the equality (22) r times with respect to
T, We obtain that

1 0ty 1 0"ty A 0"y
Op———— + Wkn=—" =
€n 8;L'ZL+1 K "895;; ’

VM =1,2,..,Vk=1,2,...,n — 1). Then from (65) it follows that

1 9rntly 1 9mntly,

(64) 0,... ,O)H < elen|CF

(65) o

" €k 895;;8@

66 Una drT oz, " Mep Oxin oz
( ) o 1 87"n+1rul 1 87‘n+1vs o~ o'y O Mg _ 0
T Ok et T Oken gt T ke (aaln T dar ) T
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1 9ntly 1 grntly, —
Lo (0,...,0) = L I (0,..,0)| =

(Vk=1,2,...,n —1). But from (64) and (66) we have
Tn+1 Tn
O-glo—ké (W(Ov 70) - %Tzlff(ov 7O)> -
Iy

8”%)9

o 5, (W(o,...,o) () ...,0))” <
< loztorl| g Cm*t + log FlleCm =

= (|l okl 1< + llow Tl ) €7,

i.e.

arn-‘rlvl arn+1vs
(67) ‘ Ox Oxy, (0 ’ O) Ox Oxy, H

< ele] <HO’ElUkH e+ o %nH) Crm =eCyCm,

~Vk=1,2,...,n—1,Vr, =1,2,...), where we have denoted

C -
(68) Cr = lex) (Hoglaku o ua;lwmu)

We apply consecutively similar considerations and it can be ob-
tain that

or1 +ro+...4+rn v
oz} 10z .0z

(0,...,0)-%(0,...,0)—” <

Oz 1oxr2 .. .0zl

(69) ‘ :
<eCPC...CM e

~Vk=1,2,....,n—1,Vr, = 1,2,...), where C}, has the form (68).
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But v;(z1, ..., zy) is entire function and then for all [, s > N we have
(70)
(21, ..oy 2n) —vs(21, .0y 20)]| =
1 6k1+k2+..4+knvl 0 0 O kl Tn—1 _r
= , itz zr —
kl,k‘;ﬂ.,kn kilkal.. kp! 32?18232...827]%”( ) ] ) 1 n—1 “n
1 8k1+k2+'”+k”’v O 0 0 kl Tn—1 _r
— 5(0,... AN Zir | <
klkZan Rkl 9. F12%2 g kn 0,...,0,0)% n—1%n" || =
1 T1 T2 Tn—1 Yy, k k kn
S DR oy w15 O G i Ol AT 2 L A e
k17k27---7kn
_ Eecl‘Zl|+CQ‘ZQ|+---+C77,71|Zn71‘+c|zn|'
Consequently {v;(z1, ..., 2,)} is uniformly convergent sequence
on the compact sets in C". The theorem is proved. U
If the matrices o1, ...,0,, {7k} are selfadjoint m x m ma-

trices, satisfying the conditions of V.A. Zolotarev (7), {yxs} (k,s =
1,2,...,n — 1) are defined by the equality (8), and the matrices {75}
(k,s = 1,2,...,n) are defined by (4), the Theorem 1 implies that the
solution v(x1, ..., x,) of the system (22) satisfies the system (10).

In the case when the selfadjoint operators {0y }} and {;} satisfy
the conditions (7) and the operators {7} are defined by (4), then the

system
Ok (-Zig;s) — Og (-li%) +§skv = 0
v(0,...,0,z) =¢g(z), z€R
(k,s =1,2,...,n) (i.e. (10)) has a unique solution satisfying the con-
dition v(0,...,0,x) = g(x), which is a restriction to R™ of an entire

function on C".
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