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ABSTRACT: In this report we show that any p-group which is of nipo-
tency class 2 and is an internal product of abelian groups is isoclinic to a
semidirect product of abelian groups.
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1 Introduction
In [1] James gives a description in terms of generators and rela-

tion of all p-groups of orders ≤ p6. The groups in the list are collected
together in isoclinism families. Two groups G and H with centers Z(G)
and Z(H) and derived (i.e., comutator) subgroups G′ and H ′ are said to
be isoclinic (written G∼ H) if there exist isomorphisms

θ : G/Z(G)→ H/Z(H),

φ : G′→ H ′,

such that φ([α,β ]) = [α ′,β ′] for all α,β ∈ G, where
α ′Z(H) = θ(αZ(G))) and β ′Z(H) = θ(βZ(G)). It is easy to show that
this relation is well defined and is in fact an equivalence relation. The
pair (θ ,φ) is called and isoclinism.

Next, recall that a group G is said to be of nilpotency class 2 if
G′ ≤ Z(G). Assume that a group G of nilpotency class 2 is an internal
product of two abelian subgroups A and B. Based on the definition of
isoclinism, we arrive to the hypothesis that G is isoclinic to a semidirect
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product of two abelian groups: G ∼ F = Ão B̃. The technical verifi-
cation of this claim however is rather long and complicated. The main
idea is to define the group F such that it removes the obstacle for an in-
ternal product to be a semidirect product and then define and isoclinism
between G and F . We will illustrate this process in the following section
for a group G with 4 generators.

2 On isoclinism of a p-group of nipotency class 2 which is
an internal product of two abelian groups
Let G be a p-group of nilpotency class 2, let B be an abelian nor-

mal subgroup with two generators, and let the quotient group G/B be an
abelian group with two generators. We can write G as an internal (not
necessarily semidirect) product BA, where B = 〈β1,β2 : β

pb1

1 = β
pb2

2 =

1, [β1,β2] = 1〉 and A = 〈α1,α2 : α
pa1

1 ,α pa2

2 , [α1,α2] ∈ B〉 for some pos-
itive integers a1,a2,b1,b2.

There are two possibilities for [α1,α2] that we need to consider
separately in order to construct a semidirect product.

(I). If [α1,α2] = 1 then α
pa1

1 ,α pa2

2 ∈ Z(G) ∩ B. Denote pti =
ord(αiZ(G)) for i = 1,2. Define F to be the semidirect product F =

Bo Ã, where Ã = 〈α̃1, α̃2 : α̃
pt1

1 = α̃
pt2

2 = 1, [α̃1, α̃2] = 1〉 and Ã acts on
B in the same way as A on B. Next, define a map θ : G/Z(G)→ F/Z(F)
by θ : αiZ(G) 7→ α̃iZ(F),βiZ(G) 7→ βiZ(F) for i = 1,2. An easy veri-
fication shows that θ is an isomorphism. Since G is of nilpotency class
2, we have G′ ≤ Z(G)∩B. If [βi,α j] is a generator of G′ (for some i, j),
define a map φ : G′ → F ′ by φ : [βi,α j] 7→ [βi, α̃ j]. Therefore, φ is an
isomorphism and α̃ jZ(F) = θ(α jZ(G)), so G and F are isoclinic.

(II). We will assume henceforth that [α1,α2] 6= 1. Denote psi =

max{ord([βi,α j]) : 1≤ j≤ 2} for i= 1,2. It is not hard to see that β
psi

i ∈
Z(G)∩B and β

pk

i /∈ Z(G)∩B for k < si, i = 1,2. If β x
1 β

y
2 /∈ Z(G)∩B for

all positive integers x,y : x < ps1 ,y < ps2 , then Z(G)∩B is generated by
β

ps1

1 and β
ps2

2 . However, it is possible that β x
1 β

y
2 ∈ Z(G)∩B for some

x,y : x < ps1 ,y < ps2 . Choose the minimal integers x and y with this
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property, and denote x = x′pk1 ,y = y′pk2 for some x′,y′ : gcd(x′, p) =
gcd(y′, p) = 1,0 ≤ k1 < s1,0 ≤ k2 < s2. We can suppose that k1 ≤ k2.
Then β x

1 β
y
2 = (β x′

1 β
y′pk2−k1

2 )pk1 ∈ Z(G)∩B, and put β = β x′
1 β

y′pk2−k1

2 . We

have now β
x′ps1

1 = β ps1
β
−y′pk2−k1+s1

2 , so β
pk2−k1+s1

2 ∈ Z(G)∩ B. There-
fore, we must have k2− k1 + s1 ≥ s2. If k2− k1 + s1 = s2 then β

ps2

2 ∈
〈β ps1

1 ,β pk1 〉, i.e., β
ps1

1 and β pk1 are the two generators of Z(G)∩B. If
k2− k1 + s1 > s2 then β

ps1

1 ∈ 〈β ps2

2 ,β pk1 〉, i.e., β
ps2

2 and β pk1 are the two
generators of Z(G)∩B.

Taking into account what we just observed and the considerations
that will follow, we can assume that Z(G)∩ B is generated by some
powers of the two generators β1 and β2. We are going to consider the
following three cases:

I Z(G)∩B is generated by β
pr1

1 and β
pr2

2 , where r1 ∈ Zpb1 \ {0},r2 ∈
Zpb2 \{0}.

II Z(G)∩B is generated by β1 and β
pr2

2 , where r2 ∈ Zpb2 \{0}.

III Z(G)∩B is generated by β1 and β2.

Case I. Let Z(G)∩ B be generated by β
pr1

1 and β
pr2

2 . Denote
ci = bi− ri for i = 1,2. Since the commutators of G must lie in the
centre of G (recall that G is of nilpotency class 2), we can write [βi,α j] =

β
ui j pr1

1 β
vi j pr2

2 for some ui j ∈ Zpc1 ,vi j ∈ Zpc2 . We also have [α1,α2] =

β
apr1

1 β
bpr2

2 for some a ∈ Zpc1 ,b ∈ Zpc2 .
Denote

pt1 = max{ord([α1,α2]),ord([β1,α1]),ord([β2,α1])},
pt2 = max{ord([α1,α2]),ord([β1,α2]),ord([β2,α2])}.

Hence α
pti

i ∈ Z(G) and α
pk

i /∈ Z(G) for k < pti . Let F be a group
generated by elements α̃i, β̃i,γi for i = 1,2 such that α̃

pti

i = β̃
pri

i = γ
pci

i =

- 5 -



Michailov I., Dimitrov I., Ivanov I.

1, [α̃1, α̃2] = γa
1 γb

2 , [β̃i, α̃ j] = γ
ui j
1 γ

vi j
2 , where γi ∈ Z(F). Without loss of

generality, we may assume that [α̃1, α̃2] = γa
1 , since we can adjust the

central generators γ1 and γ2 so that γa
1 γb

2 is a power of one generator.

(For example, if a = a′pk,b = b′pl and k≤ l, we may put γ ′1 = γa′
1 γ

b′pl−k

2 ,

so [α̃1, α̃2] = γ
′pk

1 .)
Define a map θ : G/Z(G)→ F/Z(F) by θ : αiZ(G) 7→ α̃iZ(F)

and βiZ(G) 7→ β̃iZ(F) for i = 1,2. We have |G/Z(G)|= pt1+t2+r1+r2 =
|F/Z(F)|. Hence θ is an isomorphism. Define a map φ : G′ → F ′ by
φ : β

pri

i 7→ γi for i = 1,2. Then φ is an isomorphism and φ([βi,α j]) =

[β̃i, α̃ j], where β̃iZ(F) = θ(βiZ(G)), α̃ jZ(F) = θ(α jZ(G)), so G and F
are isoclinic. We are going to show that F is a semidirect product of
abelian groups.

We need to simplify the rules of the commutators by suitable re-
placements of the generators. These replacements can be associated
with simultaneous transformations on the rows and columns of the fol-
lowing two matrices:

U =

(
u11 u12
u21 u22

)
and V =

(
v11 v12
v21 v22

)
.

Henceforth we are going to apply two types of replacements of
the generators that can be illustrated by matrix transformations.

A Replace the generator β̃2 with another generator β ′2 = β̃2β̃ x
1 for some

integer x. We have [β ′2, α̃ j] = γ
u2 j+xu1 j
1 γ

v2 j+xv1 j
2 . In terms of matri-

ces, this replacement corresponds to the simultaneous addition of
the first rows of U and V, multiplied by x, to the second rows.
This we can illustrate with the following diagram:

U =

(
u11 u12
u21 u22

)
r2+xr1−−−−→

(
u11 u12

u21 + xu11 u22 + xu12

)
,

V =

(
v11 v12
v21 v22

)
r2+xr1−−−−→

(
v11 v12

v21 + xv11 v22 + xv12

)
.
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B Replace the generator α̃2 with another generator α ′2 = α̃2α̃
y
1 for some

integer y. We have [β̃i,α
′
2] = γ

ui2+yui1
1 γ

vi2+yvi1
2 . In terms of matri-

ces, this replacement corresponds to the simultaneous addition
of the first columns of U and V, multiplied by y, to the second
columns. This we can illustrate with the following diagram:

U =

(
u11 u12
u21 u22

)
c2+yc1−−−−→

(
u11 u12 + yu11
u21 u22 + yu21

)
,

V =

(
v11 v12
v21 v22

)
c2+yc1−−−−→

(
v11 v12 + yv11
v21 v22 + yu21

)
.

Next, choose the entry of V that has the smallest power of p as a
divisor. If necessary, we interchange the generators (β̃1↔ β̃2, α̃1↔ α̃2),
so that we may assume that this entry is v11. Then there exist integers
x,y such that v11x ≡ −v21 (mod pc2) and v11y ≡ −v12 (mod pc2). We
can apply transformations A and B to get

V =

(
v11 v12
v21 v22

)
r2+xr1−−−−→
c2+yc1

(
v11 0
0 v22

)
and U is transformed into a matrix with entries that we will denote again
as ui j. We are going to consider the possibilities for the values of u12
and u21.

Sub-case I.1. Let u12 6= 0 and ord(γu12
1 )≥ ord(γa

1 ). Then (γu12
1 )z =

γ
−a
1 for some z ∈Zpc1 . We can replace α̃1 with α ′1 = α̃1β̃

z
1 , so [α ′1, α̃2] =

[α̃1, α̃2][β̃1, α̃2]
z = γa

1 γ
−a
1 = 1. Then F is a semidirect product: F =

B̃o Ã, where Ã = 〈α ′1, α̃2 : α
′pt1

1 = α̃
pt2

2 = 1, [α ′1, α̃2] = 1〉 and
B̃ = 〈β̃1, β̃2,γ1,γ2 : β̃

pr1

1 = β̃
pr2

2 = γ
pc1

1 = γ
pc2

2 = 1, [β̃1, β̃2] = 1〉.
Sub-case I.2. Let u21 6= 0 and ord(γu21

1 )≥ ord(γa
1 ). Then (γu21

1 )z =

γa
1 for some z ∈ Zpc1 . We can replace α̃2 with α ′2 = α̃2β̃

z
2 , so [α̃1,α

′
2] =

[α̃1, α̃2][β̃2, α̃1]
−z = γa

1 γ
−a
1 = 1. Then F is a semidirect product: F =
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B̃o Ã, where Ã = 〈α̃1,α
′
2 : α̃

pt1

1 = α
′pt2

2 = 1, [α̃1,α
′
2] = 1〉 and

B̃ = 〈β̃1, β̃2,γ1,γ2 : β̃
pr1

1 = β̃
pr2

2 = γ
pc1

1 = γ
pc2

2 = 1, [β̃1, β̃2] = 1〉.
Sub-case I.3. Let u12 6= 0,u21 6= 0,ord(γu21

1 )< ord(γa
1 ) and

ord(γu12
1 )< ord(γa

1 ). Then γ
u12
1 = (γa

1 )
z and γ

u21
1 = (γa

1 )
w for some w,z ∈

Zpc1 . Define β ′1 = β̃1α̃
−z
1 and β ′2 = β̃2α̃w

2 . We have now [β ′1, α̃2] =
[β ′2, α̃1] = 1 and [β ′1,β

′
2] = γ

u21z
1 . It is not hard to see that F is a semidirect

product: F = B̃o Ã, where Ã = 〈β̃1, α̃2 : β̃
pr1

1 = α̃
pt2

2 = 1, [β̃1, α̃2] = 1〉
and B̃ = 〈β̃2, α̃1,γ1,γ2 : β̃

pr2

2 = α̃
pt1

1 = γ
pc1

1 = γ
pc2

2 = 1, [β̃2, α̃1] = 1〉.
Sub-case I.4. Let u12 = u21 = 0. Then F is a semidirect product:

F = B̃o Ã, where Ã = 〈β̃1, α̃2 : β̃
pr1

1 = α̃
pt2

2 = 1, [β̃1, α̃2] = 1〉 and B̃ =

〈β̃2, α̃1,γ1,γ2 : β̃
pr2

2 = α̃
pt1

1 = γ
pc1

1 = γ
pc2

2 = 1, [β̃2, α̃1] = 1〉.
Case II. Let Z(G)∩B be generated by β1 and β

pr2

2 . Denote c2 =

b2− r2. We can write [β2,α j] = β
u2 j
1 β

v2 j pr2

2 for some u2 j ∈ Zpb1 ,v2 j ∈
Zpc2 . We also have [α1,α2] = β a

1 β
bpr2

2 for some a ∈ Zpb1 ,b ∈ Zpc2 .
Denote

pt1 = max{ord([α1,α2]),ord([β2,α1])},
pt2 = max{ord([α1,α2]),ord([β2,α2])}.

Hence α
pti

i ∈ Z(G) and α
pk

i /∈ Z(G) for k < pti . Let F be a group gen-

erated by elements α̃i,γi, i = 1,2 and β̃2 such that α̃
pti

i = β̃
pr2

2 = γ
pb1

1 =

γ
pc2

2 = 1, [α̃1, α̃2] = γa
1 γb

2 , [β̃2, α̃ j] = γ
u2 j
1 γ

v2 j
2 , where γi ∈ Z(F). Without

loss of generality, we may again assume that [α̃1, α̃2] = γa
1 .

Define a map θ : G/Z(G)→ F/Z(F) by θ : αiZ(G) 7→ α̃iZ(F)

and β2Z(G) 7→ β̃2Z(F) for i = 1,2. We have |G/Z(G)| = pt1+t2+r2 =
|F/Z(F)|. Hence θ is an isomorphism. Define a map φ : G′ → F ′ by
φ : β1 7→ γ1,β

pr2

2 7→ γ2. Then φ is an isomorphism and φ([β2,α j]) =

[β̃2, α̃ j], where β̃2Z(F) = θ(β2Z(G)), α̃ jZ(F) = θ(α jZ(G)), so G and
F are isoclinic. We are going to show that F is isoclinic to a semidirect
product of abelian groups.
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Define the matrices

U =

(
0 0

u21 u22

)
and V =

(
0 0

v21 v22

)
.

Next, choose the entry of V that has the smallest power of p as a divisor.
If necessary, we interchange the generators (α̃1↔ α̃2), so that we may
assume that this entry is v22. Then there exists an integers x such that
v22x≡−v21 (mod pc2). We can apply transformation B to get

V =

(
0 0

v21 v22

)
−−−−→
c1+xc2

(
0 0
0 v22

)
,

and U is transformed into a matrix with entries that we will denote again
as ui j (of course, we again have u11 = u12 = 0). We are going to consider
the possibilities for the values of u21.

Sub-case II.1. Let u21 6= 0 and ord(γu21
1 )≥ ord(γa

1 ). Then (γu21
1 )z =

γa
1 for some z ∈ Zpc1 . We can replace α̃2 with α ′2 = α̃2β̃

z
2 , so [α̃1,α

′
2] =

[α̃1, α̃2][β̃2, α̃1]
−z = γa

1 γ
−a
1 = 1. Then F is a semidirect product: F = B̃o

Ã, where Ã= 〈α̃1,α
′
2 : α̃

pt1

1 =α
′pt2

2 = 1, [α̃1,α
′
2] = 1〉 and B̃= 〈β̃2,γ1,γ2 :

β̃
pr2

2 = γ
pb1

1 = γ
pc2

2 = 1〉.
Sub-case II.2. Let u21 6= 0 and ord(γu21

1 )< ord(γa
1 ). Then γ

u21
1 =

(γa
1 )

w for some w ∈ Zpb1 . Define β ′2 = β̃2α̃w
2 . We have now [β ′2, α̃1] = 1.

It is not hard to see that F is a semidirect product: F = B̃o Ã, where
Ã = 〈β ′2, α̃1 : β

′pr2

2 = α̃
pt1

1 = 1, [β ′2, α̃1] = 1〉 and B̃ = 〈α̃2,γ1,γ2 : α̃
pt2

2 =

γ
pb1

1 = γ
pc2

2 = 1〉.
Sub-sub-case II.3. Let u21 = 0. Then F is a semidirect product:

F = B̃o Ã, where Ã = 〈α̃1, β̃2 : α̃
pt1

1 = β̃
pr2

2 = 1, [β̃2, α̃1] = 1〉 and B̃ =

〈α̃2,γ1,γ2 : α̃
pt2

2 = γ
pb1

1 = γ
pc2

2 = 1〉.
Case III. Let Z(G)∩B be generated by β1 and β2. Then [βi,α j] =

1 for all i, j : 1 ≤ i, j ≤ 2, and [α1,α2] = β a
1 β b

2 for some a ∈ Zpb1 ,b ∈
Zpb2 . As we noted before, β a

1 β b
2 can be written as a power of one gener-

ator of B, i.e., we can assume that [α1,α2] = β a
1 for some a∈Zpb1 . Then
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G is an internal product B̃Ã, where Ã is an abelian group generated by
α1,β2, and B̃ is a normal abelian subgroup of G generated by α2,β1.
Now we can apply our argument from the beginning of this section to
conclude that G is isoclinic to a semidirect product.
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