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ABSTRACT: In this paper we consider the dynamical behavior of solu-
tions near explicit self-similar solutions for a strong dispersive nonlinear wave
equation. First we construct explicit self-similar solutions, then we investigate
dynamical behavior of the solutions near to the self-similar solutions.
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1 Introduction
In this paper we consider the following strong dispersive nonlin-

ear wave equation
(1.1)

ut −α
2utxx +2kux +3uux + γ(u−α

2uxx)xxx = α
2(2uxuxx +uuxxx),

Equation (1.1) is a version of the following well-known generalization
of the Dullin-Gottwald-Holm equation [1]

(1.2) ut −α
2utxx +2ωux +3uux + γuxxx = α

2(2uxuxx +uuxxx),

Equation (1.2) is derived in [1] as a model for shallow water waves. The
Cauchy problem for the equation Dullin-Gottwald-Holm in both peri-
odic and non periodic case was studied in [4, 5, 6]. For (1.2) the prob-
lem of the asymptotic stability of self-similar solution was considered
in [3]. The authors construct explicit self-similar solutions and consider
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the dynamical behavior of the solutions near to the self-similar solu-
tions. Moreover the asymptotic stability also was considered. Our aim
in this paper to construct self-similar solutions of equation (1.1) and to
consider dynamical behavior of the solutions arround of these solutions.

Paper is organizated as follows. In section 2 we construct the
explicit form the self-similar solutions. In section 3 we investigate dy-
namical behavior of the solutions near to the self-similar solutions.

2 The explicit self-similar solutions
In this section, we construct self-similar solutions for equation

ut −α
2utxx +2kux +3uux + γ(u−α

2uxx)xxx = α
2(2uxuxx +uuxxx),

(t,x) ∈ R+×R.
Let the parameter T be a positive constant. We introduce the similarity
coordinates

(2.1) τ =−log(T − t), ρ =
x

T − t
,

then we denote by

u(t,x) = φ

(
−log(T − t),

x
T − t

)
,

direct computation gives that
ut(t,x) = eτ(φτ +ρφρ), ux(t,x) = eτφρ ,
uxx(t,x) = e2τφρρ , utxx = e3τ(φτρρ +2φρρ +ρφρρρ),
uxxx(t,x) = e3τφρρρ , uxxxxx(t,x) = e5τφρρρρρ .
Thus Eq. (1.1) is transformed into an one dimensional quasilinear

equation

(2.2)
φτ +(ρ +2k+3φ)φρ −α2e2τ(φτρρ +2φρρ +ρφρρρ)

+γe2τ(φ −α2e2τφρρ)ρρρ = α2e2τ(2φρφρρ +φφρρρ).
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The steady equation of quasilinear Eq. (2.2) is

(2.3) (ρ +2k+3φ)φρ = 0,

which is an ODE. Direct computation shows that it admits a non-trivial
solution

(2.4) φ(ρ) =−1
3
(ρ +2k).

Consequently, the Eq. (1.1) admits an explicit self-similar solution

(2.5) u(t,x) =−1
3

(
x

T − t
+2k

)
.

3 Dynamical behavior
Consider the perturbation of the form

(3.1) u(t,x) = v(t,x)+u(t,x),

where u(t,x) =−1
3

( x
T−t +2k

)
is the explicit self-similar solution given

in (1.1).
We substitute (3.1) into (1.1), then a dissipative quasilinear equa-

tion with singular time coefficient is obtained as

(3.2)

vt −α2vtxx − γα2vxxxxx +
(

γ + α2

3

( x
T−t +2k

))
vxxx

+ 2α2

3(T−t)vxx − x
T−t vx − 1

T−t v

= α2(2vxvxx + vvxxx)−3vvx, ∀(t,x) ∈ (0,T )×R,

with the initial data v(0,x) = v0(x) = u0(x)+ 1
3

( x
T +2k

)
.
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In the similarity coordinates (2.1), Eq. (3.2) can be rewritten as
follows

(3.3)
vτ −α2e2τvτρρ − 4α2

3 e2τvρρ + e2τ

(
γ + 2α2

3 (k−ρ)
)

vρρρ

−α2γe4τvρρρρρ − v+3vvρ = α2e2τ(2vρvρρ + vvρρρ).

We introduce the transformation v(τ,ρ0)= e−τv(τ,ρ), with ρ0 := e−τρ,
to reduce Eq. (3.3) into

vτ −α
2vτρ0ρ0 −

α2

3
vρ0ρ0 +e−τ

(
γ(v−α

2vρ0ρ0)ρ0ρ0ρ0 +
2α2

3
(k−ρ)vρ0ρ0ρ0

)
+α

2
ρ0vρ0ρ0ρ0 +(3v−ρ0)vρ0 = α

2(2vρ0vρ0ρ0 + v vρ0ρ0ρ0).

Note the operator 1−α2∂ρ0ρ0 has a fundamental solution p(x)= 1
2α

e−| ρ0
α
|.

We can denote the operator (1−α2∂ρ0ρ0)
1
2 by Λ, then Λ−2v =

p(ρ0)⋆ v for all v ∈ L2.
Let w(τ,ρ0) = v(τ,ρ0)−α2vρ0ρ0(τ,ρ0), then it holds v(τ,ρ0) =

p ⋆w, where ρ0 ∈ R and ⋆ denotes the convolution. Furthemore, Eq.
(3.3) can be rewritten as a dissipative non-local equation

(3.4)

wτ +
1
3 w− e−τ

(
2k+eτ ρ0

3

)
wρ0 + γe−τwρ0ρ0ρ0 − 1

3(p⋆w)

+e−τ

(
2(k−eτ ρ0)

3

)
(p⋆w)ρ0 +3(p⋆w)(p⋆w)ρ0

= 2(p⋆w)ρ0(p⋆w−w)+(p⋆w)((p⋆w)ρ0 −wρ0),

with the initial data

(3.5)
w(0,ρ0) := w0(ρ0) = v0(ρ0)−α2vρ0ρ0(0,ρ0)

= u0(x)−α2uq0(x)+
1
3

( x
T +2k

)
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and the boundary condition

(3.6) lim
|ρ0|→+∞

w(τ,ρ0) = 0, lim
|ρ0|→+∞

wρ0(τ,ρ0) = 0.

Here we use (p⋆w)ρ0ρ0 = α−2(p⋆w−w).
The term

(
1− a

m

)
w is a dissipative term in Eq. (3.4). This term

can make us to get a good priori estimate on the solution for Eq. (3.4).
We recall a commutator estimate established in [2].

Lemma 3.1. [2] Let s > 0. Then it holds

(3.7) ∥[Λs,u]v∥L2 ≤C
(
∥∂xu∥L∞∥Λ

s−1v∥L2 +∥Λ
su∥L2∥v∥L∞

)
,

where positive constant C depending on s.

We now derive a priori estimate of the solution for Eq. (3.4). Let
s > 0. Applying Λs to both sides of (3.4), it holds
(3.8)

(Λsw)τ +
1
3 Λsw− e−τΛs

[
2k+eτ ρ0

3 wρ0

]
+ γe−τΛswρ0ρ0ρ0

−1
3 Λs(p⋆w)+ e−τΛs

[
2(k−eτ ρ0)

3 (p⋆w)ρ0

]
+3Λs(p⋆w)(p⋆w)ρ0

= 2Λs
[
(p⋆w)ρ0(p⋆w−w)

]
+Λs

[
(p⋆w)

(
(p⋆w)ρ0 −wρ0

)]
.

Lemma 3.2. Let s > 4. Then any solution w of Eq. (3.4) satisfies

∥ w ∥Hs(R)≤Ce−τ ∥ w0 ∥Hs(R),

where C is a positive constant, depending on s.
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Proof. Taking the L2-inner product with equation (3.8) by Λsw,
we get

(3.9)

1
2

d
dτ
∥w∥2

Hs + 1
3∥w∥2

Hs − e−τ
∫
R ΛswΛs

[
2k+eτ ρ0

3 wρ0

]
dρ0

+γe−τ
∫
R ΛswΛs[wρ0ρ0ρ0 ]dρ0 − 1

3
∫
R ΛswΛs(p⋆w)dρ0

+e−τ
∫
R ΛswΛs

[
2(k−eτ ρ0)

3 (p⋆w)ρ0

]
dρ0

+3
∫
R ΛswΛs

(
(p⋆w)(p⋆w)ρ0

)
dρ0

= 2
∫
R ΛswΛs

[
(p⋆w)ρ0(p⋆w−w)

]
dρ0

+
∫
R ΛswΛs

[
(p⋆w)

(
(p⋆w)ρ0 −wρ0

)]
dρ0.

Next we estimate each of terms in (3.9) . On the hand, we use
integration by parts to derive

(3.10)

∫
R ΛswΛs

[
2k+eτ ρ0

3 wρ0

]
dρ0 =

∫
R

[
2k+eτ ρ0

3 wρ0

]
Λ2swdρ0

=−1
3 eτ

∫
R ΛswΛswdρ0 − 1

2
∫
R

2k+eτ ρ0
3 (Λsw)2

ρ0
dρ0

=−1
6 eτ∥w∥2

Hs ,

and

(3.11)
∫
R

Λ
swΛ

s [wρ0ρ0ρ0

]
dρ0 =−1

2

∫
R
(Λswρ0)

2
ρ0

dρ0 = 0,

and

(3.12) 1
3
∫
R ΛswΛs(p⋆w)dρ0 =

1
3∥w∥2

Hs−1 ,
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and

(3.13)

∫
R ΛswΛs

[
2(k−eτ ρ0)

3 (p⋆w)ρ0

]
dρ0

= 2
3 eτ

∫
R Λs−1wΛs−1wdρ0 +

1
2
∫
R

2(k−eτ ρ0)
3 (Λs−1w)2

ρ0
dρ0

= eτ∥w∥2
Hs−1 ,

and

(3.14)
3
∫
R ΛswΛs

(
(p⋆w)(p⋆w)ρ0

)
dρ0 =−3

2
∫
R wρ0(Λ

s−1w)2dρ0

≤ 3
2 ∥ wρ0 ∥L∞∥ w ∥2

Hs−1≤ 3
2 ∥ w ∥3

Hs−1 .

On the other hand, by (3.7), Holder inequality and Hs−1 ⊂ L∞

with s > 4, we derive

(3.15)

2 |
∫
R ΛswΛs

(
(p⋆w)ρ0(p⋆w−w)

)
dρ0 |

= 2 |
∫
R[Λ

s,(p⋆w−w)](p⋆w)ρ0Λswdρ0 |
+2 |

∫
R(p⋆w−w)Λs(p⋆w)ρ0Λswdρ0 |

≤C
(
∥ (p⋆w−w)ρ0 ∥L∞∥ Λs−1(p⋆w)ρ0 ∥L2

+ ∥ Λs(p⋆w−w) ∥L2∥ (p⋆w)ρ0 ∥L∞

)
∥ w ∥Hs

+2
(
∥ p⋆w−w ∥L∞ + ∥ (p⋆w−w)ρ0 ∥L∞

)
∥ w ∥2

H2

≤C ∥ w ∥3
Hs
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and

(3.16)

∣∣∫
R ΛswΛs

(
(p⋆w)((p⋆w)ρ0 −wρ0)

)
dρ0

∣∣
=
∣∣∫

R[Λ
s,(p⋆w)]((p⋆w)ρ0 −wρ0)Λ

swdρ0
∣∣

+
∣∣∫

R(p⋆w)Λs((p⋆w)ρ0 −wρ0)Λ
swdρ0

∣∣
≤C

(
∥(p⋆w)ρ0∥L∞ ∥ Λs−1((p⋆w)ρ0 −wρ0)∥L2

+ ∥Λs(p⋆w)∥L2 ∥ (p⋆w)ρ0 −wρ0 ∥L∞

)
∥ w ∥Hs

+2 ∥ p⋆w ∥L∞∥ w ∥2
H2

≤C∥w∥3
Hs ,

where C is a positive constant, depending on s.
Thus using (3.11)-(3.16), it follows from (3.9) that

d
dτ

∥w∥2
Hs +∥w∥2

Hs ≤
d

dτ
∥w∥2

Hs +∥w∥2
Hs +

4
3
∥ w ∥2

Hs−1≤C ∥ w ∥3
Hs ,

which is a Bernoulli-type differential inequality, it is equivalent to

− d
dτ

∥w∥−1
Hs +∥w∥−1

Hs ≤C,

which given that

∥w∥Hs ≤Ce−τ∥w0∥Hs .
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