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A GENERALIZED FORM OF THE GELFAND - LEVITAN -
MARCHENKO EQUATION

Galina S. Borisova

ABSTRACT: In this paper we derive a generalized form of the Gelfand-Levitan-

Marchenko equation of the inverse scattering problem for the Korteweg-de Vries equation

using the obtained output realization of two operator colligation and results of the

author concerning the connection between the soliton theory and the theory of commuting

nonselfadjoint operators. The presented results can be expanded for the Schr�odinger

equation, the Heisenberg equation, the Sine-Gordon equation and the Davey-Stewartson

equation.
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This paper is dedicated to applications of the connection between the soliton theory
and the theory of commuting nonselfadjoint operators. This connection is established by M.S.
Liv�sic and Y. Avishai in [9] and it is based on the Marchenko method for solving of nonlinear
di�erential equations [12] and the Liv�sic colligation theory of nonselfadjoint operators [10, 11].
M.S. Liv�sic and Y. Avishai in [9] consider the imaginary part of the dissipative operator B in
a Hilbert space H with zero limit

lim
x→+∞

(eixBf, eixBf) = 0 (f ∈ H)

as one dimensional subspace of H according to a new scalar product and this allows to apply
the connection between theories for obtaining of new scalar solutions of nonlinear di�erential
equations. It turns out that this idea can be expanded in the case of the larger class of
nondissipative nonselfadjoint operators B, presented as a coupling of a dissipative operator
and an antidissipative operator with absolutely continuous real spectra and nonzero limit

lim
x→+∞

(eixBf, eixBf) ̸= 0 (f ∈ H)

(see [3]). With the help of the triangular model of the coupling B, introduced in [1], and
asymptotics of the corresponding nondissipative curves {eixBf} as x → ±∞ (see [5]) scalar
solutions of di�erent nonlinear di�erential equations (the Schr�odinger equation, the Heisenberg
equation, the Sine-Gordon equation, the Davey-Stewartson equation) are obtained in [3], using
appropriate couples and triplets of nonselfadjoint operators.

In this paper we derive a generalized form of the Gelfand-Levitan-Marchenko equation of
the inverse scattering problem for the Korteweg-de Vries equation, using results, obtained in
[3] and the so-called output realization of two-operator colligation.

Let A and B be linear bounded nonselfadjoint operators in a Hilbert space H with �nite
dimensional imaginary parts. The subspace G = GA + GB, where GA = (A − A)∗H and
GB = (B − B∗)H, is called the non-Hermitian subspace of the pair (A,B), GA, GB are called
non-Hermitian subspaces of A and B correspondingly.

Let H, E be Hilbert spaces, let A, B be linear bounded nonselfadjoint operators in H.
The set

X = (A,B;H,Φ, E;σA, σB, γ, γ̃) (1)
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is called a regular colligation, if

1

i
(A− A∗) = Φ∗σAΦ,

1

i
(B −B∗) = Φ∗σBΦ, (2)

σAΦB
∗ − σBΦA

∗ = γΦ, (3)

σAΦB − σBΦA = γ̃Φ, (4)

γ̃ − γ = i(σAΦΦ
∗σB − σBΦΦ

∗σA), (5)

where σA, σB, γ, γ̃ are bounded selfadjoint operators in E, Φ is a bounded linear mapping of
H into E.

Instead of the term regular colligation it can be used the term vessel, that has been coined
in [11].

If ΦH = E and kerσA ∩ kerσB = {0} the colligation is called a strict colligation. A
colligation is said to be commutative if AB = BA. Strict commutative colligations are regular
(see [7, 8]).

In many cases of interests the subspace G is �nite dimensional. We consider the case when
dimE < +∞.

It has to mention that every pair (A,B) of commuting nonselfadjoint operators in H
with �nite dimensional imaginary parts can be always embedded in a commutative regular
colligation (1) by setting

E = G = (A− A∗)H + (B −B∗)H = GA +GB, Φ = PE,

σA =
1

i
(A− A∗)|E, σB =

1

i
(B −B∗)|E,

γ =
1

i
(AB∗ −BA∗)|E, γ̃ =

1

i
(B∗A− A∗B)|E

where PE is an orthoprojector onto E.
The system-theoretic interpretation of an two-operator colligation leads to an open two

dimensional system. To a given commutative regular colligation (1) there corresponds the next
open system 

i∂f
∂t

+ Af = Φ∗σAu

i∂f
∂x

+Bf = Φ∗σBu
v = u− iΦf

(6)

where the functions u = u(x, t), v = v(x, t), with values in E and f = f(x, t) with values in H
are the collective input, the collective output and the collective state correspondingly.

Instead of the open system (6) we consider a generalized open system, introduced in [3],
from the form 

i1
ε

∂
∂t
+ Af = Φ∗σAu,

i1
δ

∂
∂x
f +Bf = Φ∗σBu,

v = u− iΦf,
(7)

where constants ε, δ ∈ C. Using the equality of the mixed partials ∂2f
∂t∂x

= ∂2f
∂x∂t

it follows the
next compatibility conditions:
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Theorem 1. (See [3].) For the commutative regular colligation (1) the equations (7) of the
collective motions are compatible if and only if the input u(x, t) satis�es the following partial
di�erential equation

σB

(
−i

1

ε

∂u

∂t

)
− σA

(
−i

1

δ

∂u

∂x

)
+ γu = 0 (8)

and the corresponding output v(x, t) satis�es the equation

σB

(
−i

1

ε

∂v

∂t

)
− σA

(
−i

1

δ

∂v

∂x

)
+ γ̃v = 0. (9)

The equations (8) and (9) are the matrix wave equations. Let us consider now the more
general collective motions from the form

T (x, t) = ei(εtA+δxB), T ∗−1(x, t) = ei(εtA
∗+δxB∗). (10)

It is evident that the vector function (or so-called open �eld, following M.S. Liv�sic) f(x, t) =
T (x, t)h (h ∈ H) satis�es the system (7) with identically zero input and an arbitrary initial
state f(0, 0) = h (h ∈ H).

Theorem 2. (See [3].) The operator functions

V (x, t) = ΦT (x, t) = Φei(εtA+δxB), Ṽ (x, t) = ΦT ∗−1(x, t) = Φei(εtA
∗+δxB∗)

are solutions of the next systems of the partial di�erential equations (or matrix wave equations)(
σB

(
−i

1

ε

∂

∂t

)
− σA

(
−i

1

δ

∂

∂x

)
+ γ̃

)
V = 0, (11)

(
σB

(
−i

1

ε

∂

∂t

)
− σA

(
−i

1

δ

∂

∂x

)
+ γ

)
Ṽ = 0. (12)

Let now the operator B be the triangular model of a coupling of a dissipative operator
and an antidissipative operator with absolutely continuous real spectra (introduced in [1] and
investigated in [5]).

Bf(w) = α(w)f(w)− i
w∫
a′
f(ξ)Π(ξ)S∗Π∗(w)dξ + i

b′∫
w

f(ξ)Π(ξ)SΠ∗(w)dξ+

+i
w∫
a′
f(ξ)Π(ξ)LΠ∗(w)dξ,

(13)

where f = (f1, f2, . . . , fp) ∈ H = L2(∆;Cp), ∆ = [a′, b′], L : Cm −→ Cm, detL ̸= 0, L∗ = L,
L = J1 − J2 + S + S∗,

J1 =

(
Ir 0
0 0

)
, J2 =

(
0 0
0 Im−r

)
, S =

(
0 0

Ŝ 0

)
, (14)

r is the number of the positive eigenvalues and m− r is the number of the negative eigenvalues
of the matrix L, Π(w) is a measurable p × m (1 ≤ p ≤ m) matrix function on ∆, whose
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rows are linearly independent at each point of a set of positive measure, the matrix function
Π̃(w) = Π∗(w)Π(w) satis�es the conditions

tr Π̃(w) = 1, Π̃(w)J1 = J1Π̃(w),

||Π̃(w1) − Π̃(w2)|| ≤ C|w1 − w2|α1 for all w1, w2 ∈ ∆ for some constant C > 0, α1 is an
appropriate constant with 0 < α1 ≤ 1 (see [5]), (where || || is the norm in Cm) and the
function α : ∆ −→ R satis�es the conditions:

(i) the function α(w) is continuous strictly increasing on ∆;
(ii) the inverse function σ(u) of α(w) is absolutely continuous on [a, b] (a = α(a′), b =

α(b′));
(iii) σ′(u) is continuous and satis�es the relation |σ′(u1) − σ′(u2)| ≤ C|u1 − u2|α2 , (0 <

α2 ≤ 1) for all u1, u2 ∈ [a, b] and for some constant C > 0.
In [5] it has been obtained the existence and in [2] it has been obtained the explicit form

of the wave operators W±(B
∗, B) in the strong sense for the couple (B∗, B), where B is the

model of a coupling (13) and wave operators W±(B
∗, B) for the couple (B∗, B) have the form

W±(B
∗, B) = s− lim

x→±∞
eixB

∗
e−ixB = S̃∗

∓S̃∓ (15)

onto the space L2(∆;Cp), where S̃∓ are obtained in [5] in explicit form in terms of multiplicative
integrals and a �nite dimensional analogue of the classical gamma function (see, for example,
[5, 6]).

Let us consider the case when δ = 1 in collective motions (10). Then

V (x, t) = Φei(xB+εtA) = ΦT (x, t)

satis�es the equation (11) with δ = 1, which can be written in the form

D

(
−i

1

ε

∂

∂t
,−i

∂

∂x

)
V (x, t) = 0,

where D(λ, µ) = det(λσB − µσA + γ) = det(λσB − µσA + γ̃) is the discriminant polynomial of
the pair of operators A,B. Then from Theorem 1 it follows that the corresponding output of
the open system (7) (with δ = 1) satis�es the following matrix partial di�erential equation

σB

(
−i

1

ε

∂v

∂t

)
− σA

(
−i

∂v

∂x

)
+ γ̃v = 0. (16)

Let Ĥ be the principal subspace of the pair A, B, i.e. Ĥ = span{AkBjΦ∗p, k, j =

0, 1, 2, . . . , p ∈ Cm}. Let H̃ be the set of solutions

vh(x, t) = Φei(xB+εtA)h, h ∈ Ĥ (17)

of the equation (16). Let the operator U : Ĥ −→ H̃ be de�ned by the equality

Uh = Φei(xB+εtA)h = vh(x, t), h ∈ Ĥ. (18)

Then from the existence of the limit

lim
x→+∞

(eixBh, eixBh) = (S̃∗
+S̃+h, h), h ∈ Ĥ (19)
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for the coupling B it follows that

(h, h) = lim
x→+∞

(eixBh, eixBh) +

∞∫
0

(σBΦe
ixBh,ΦeixBh)dx. (20)

Now the equality (20) shows that the formula

⟨vh1(x, t), vh2(x, t)⟩ = lim
x→+∞

(eixBh1, e
ixBh2) +

∞∫
0

(σBvh1(x, 0), vh2(x, 0))dx (21)

de�nes a scalar product in H̃ and the operator U is an isometric one. Now as in [4] it can be
proved the next theorem

Theorem 3. Let X = (A,B,H,Φ, E, σA, σB, γ, γ̃) be a commutative regular colligation with

an operator B de�ned by (13). Let Ĥ be the principal subspace of the pair A, B. Then the
colligation

X̂ = (A,B, Ĥ,Φ, E, σA, σB, γ, γ̃)

is unitary equivalent to the colligation

X̃ = (Ã, B̃, H̃, Φ̃, E, σA, σB, γ, γ̃)

where Ã = −i1
ε

∂
∂t
, B̃ = −i ∂

∂x
, H̃ is a set of solutions (18) of the equation (16) such that

1) H̃ is a Hilbert space with respect to the scalar product (21);

2) if v(x, t) belongs to H̃ then Ãv(x, t) and B̃v(x, t) belong to H̃;

3) the operators Ã and B̃ are bounded in H̃;
4) the next equality holds

lim
ξ→+∞

⟨eiξB̃vh(x, t), eiξB̃vh(x, t)⟩ = lim
ξ→+∞

(eiξB̃h, eiξB̃h) (vh ∈ H̃).

The proof of the theorem follows from the existence of the limit (19), obtained in explicit
form in [5].

Following the introduced de�nitions by M.S. Liv�sic in [7] the functions vh(x, t) and vh(x, 0)

are said to be the output realization and the mode of an element h ∈ Ĥ correspondingly.
At �rst let us consider (7) in the case when ε = 1 and Ũ is an unitary operator such that

ŨBŨ∗ = −B∗, ŨAŨ∗ = −A∗, A = 4B3, B is the considered coupling. Then

T (x, t) = ei(xB+4tB3), T ∗−1(x, t) = Ũe−i(xB+4tB3)Ũ∗ = ŨT (−x,−t)Ũ∗

and the solitonic combination

S(x, t) = Γ−1(x, t)Γx(x, t),

where Γx(x, t) = T (x, t)N + T (−x,−t)M̃ takes the form

S(x, t) = Γ−1Γx = iB − iΓ−1N1T (−x,−t)(BM1 +M1B)
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where the solitonic combination satis�es the operator KdV equation. Using results in [3] we

have that N1 = NŨ ,

M2 = U∗M =

∞∫
0

eixBρ1
B −B∗

i
eixBdx (22)

where we have denoted ρ1 = Ũ∗ρ and the operator M is de�ned by the equality

M =

∞∫
0

e−ixB∗
ρ
B −B∗

i
eixBdx

which satis�es the equality
B∗M −MB = ρ(B∗ −B).

(The last equality follows, using the asymptotic behaviour of the nondissipaive curves eixBf as
x±∞, the form of ΦeixBf (see [5]) and obtained in [3].) Now using that PB

∂
∂x
S(x, t)PB is the

scalar solution of the nonlinear equation

vt − 6vvx + vxxx = 0.

Consequently we have to �nd the expression

h = −iΓ−1N1T (−x,−t)(BM1 +M1B)g, g ∈ GB.

Let now choose N1 = I. Then h takes the form

h = (I + T (−2x,−2t)M1)
−1T (−2x,−2t)ρ1Φ

∗σBΦg. (23)

Hence
h = −T (−2x,−2t)M1h+ T (−2x,−2t)ρ1Φ

∗σBΦg. (24)

But from (22) and (17) we have

M1h =

∞∫
0

eiηBρ1Φ
∗σBvh(η, 0)dη. (25)

Now (24) and (25) imply that

h = −T (−2x,−2t)

∞∫
0

eiηBρ1Φ
∗σBvh(η, 0)dη + T (−2x,−2t)ρ1Φ

∗σBΦg. (26)

Consequently, from (26) and (17) it follows that

ĥ(ξ) = vh(ξ, 0) = ΦeiξBh =

= −ΦeiξBT (−2x,−2t)
∞∫
0

eiηBρ1Φ
∗σBvh(η, 0)dη + ΦeiξBT (−2x,−2t)ρ1Φ

∗σBvg(0, 0)

and hence

ĥ(ξ) = vh(ξ, 0) = ΦeiξBh =

= −Φ
∞∫
0

T (ξ + η − 2x,−2t)ρ1Φ
∗σBĥ(η)dη + ΦT (ξ − 2x,−2t)ρ1Φ

∗σBvg(0, 0)
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or the equivalent representation

ĥ(ξ) = vh(ξ, 0) = ΦeiξBh =

= −
∞∫
0

Ψ(ξ + η − 2x,−2t)ĥ(η)dη +Ψ(ξ − 2x,−2t)vg(0, 0),
(27)

where we have denoted
Ψ(x, t) = ΦT (x, t)ρ1Φ

∗σB.

The equation (27) is a generalized form of the Gelfand-Levitan-Marchenko equation, presented
in terms of the output realization of the two-operator colligation. Consequently, we have proved
the next theorem:

Theorem 4. Let the operator B be the coupling (13) of dissipative and antidissipative operators
with absolutely continuous real spectra. Let the operators A = 4B3 be embedden in a regular
colligation from the form (1) and B satis�es the condition B∗ = −ŨBŨ∗, where Ũ is unutary
operator in H. Then the generalized Gelfand-Levitan-Marchenko equation for the KdV equation
is

ĥ(ξ) = vh(ξ, 0) = ΦeiξBh =

= −
∞∫
0

Ψ(ξ + η − 2x,−2t)ĥ(η)dη +Ψ(ξ − 2x,−2t)vg(0, 0),

where
Ψ(x, t) = ΦT (x, t)ρ1Φ

∗σB

and vh(x, t) is the output realization (17).

Finally it is worth to mention that analogously it can be considered di�erent cases,
corresponding to the Schr�odinger equation, the Heisenberg equation, the Sine-Gordon equation,
which relate to the di�erent values of the constant ε, and the Davey-Stewartson equation (with
the help of the connection between three commuting nonselfadjoint operators and the soliton
theory).
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