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ABSTRACT: In this paper we consider the Cauchy problem for the strong dispersive nonlinear
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1 Introduction
In this paper we consider the following strong dispersive nonlinear wave equation

(1.1) ut −α
2utxx +2kux +3uux + γ(u−α

2uxx)xxx = α
2(2uxuxx +uuxxx).

Equation (1.1) is a version of the following well-known generalization of the Dullin-Gottwald-
Holm equation [1]

(1.2) ut −α
2utxx +2ωux +3uux + γuxxx = α

2(2uxuxx +uuxxx).

Equation (1.2) is derived in [1] as a model for shallow water waves. The Cauchy problem for the
equation Dullin-Gottwald-Holm in both periodic and non periodic case was studied in [5, 7, 8].
For (1.2) the problem of the asymptotic stability of self-similar solution was considered in [4].
The authors construct explicit self-similar solutions and consider the dynamical behavior of the
solutions near to the self-similar solutions. Moreover the asymptotic stability also was considered.

For Eq. (1.1) self-similar solutions are in the form

u(t,x) =−1
3

(
x

T − t
+2k

)
and dynamical behavior arround of these solutions was considered in [3]. Consider the perturbation
of the form

u(t,x) = v(t,x)+u(t,x).

For v, we get the following equation

(1.3)
vτ −α2e2τvτρρ − 4α2

3 e2τvρρ + e2τ

(
γ + 2α2

3 (k−ρ)
)

vρρρ

−α2γe4τvρρρρρ − v+3vvρ = α2e2τ(2vρvρρ + vvρρρ),

where τ =−log(T − t), ρ = x
T−t and T > 0.

Equation (1.1) is can be written as a dissipative non-local equation

(1.4)

wτ +
1
3w− e−τ

(
2k+eτ ρ0

3

)
wρ0 + γe−τwρ0ρ0ρ0 − 1

3(p⋆w)

+e−τ

(
2(k−eτ ρ0)

3

)
(p⋆w)ρ0 +3(p⋆w)(p⋆w)ρ0

= 2(p⋆w)ρ0(p⋆w−w)+(p⋆w)((p⋆w)ρ0 −wρ0),
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where w(τ,ρ0) = v(τ,ρ0)−α2vρ0ρ0(τ,ρ0), v(τ,ρ0) = e−τv(τ,ρ) and ρ0 := e−τρ with the initial
data

(1.5)
w(0,ρ0) := w0(ρ0) = v0(ρ0)−α2vρ0ρ0(0,ρ0)

= u0(x)−α2u∥0(x)+
1
3

( x
T +2k

)
and the boundary conditions

(1.6) lim
|ρ0|→+∞

w(τ,ρ0) = 0, lim
|ρ0|→+∞

wρ0(τ,ρ0) = 0.

Our aim in this paper to study the global well-posedness for Eq. (1.4) with the initial data
(1.5) and boundary conditions (1.6).

2 Main result
In this section we study the global well-posedness for Eq. (1.4) with the initial data (1.5) and

boundary conditions (1.6). We denote by L the following linear operator

(2.1)
L[w] := −1

3w+ e−τ 1
3(2k+ eτρ0)wρ0 − γe−τwρ0ρ0ρ0

+1
3(p⋆w)− e−τ 2

3(k− eτρ0)(p⋆w)ρ0,

then Eq. (1.4) can be rewritten as

(2.2) wτ = L[w]+ f (w),

where the nonlinear term

f (w) :=−3(p⋆w)(p⋆w)ρ0 +2(p⋆w)ρ0(p⋆w−w)+(p⋆w)[(p⋆w)ρ0 −wρ0].

Lemma 2.1. For s > 4, we have

• L[w] ∈Hs, ∀w ∈ D(L).

• L is a closed and densely defined linear operator in Hs.

Proof. It is a direct verification based on the definition of L in (2.1).

Lemma 2.2. For s > 4, L is a dissipative operator in Hs, i.e., (L[w],w)s ≤ 0.

Proof. A direct calculations leads to∫
R(Λ

sL[w])Λswdρ0

= −1
3∥w∥2

Hs + 1
3
∫
RΛswΛs(p⋆w)dρ0

+
∫
RΛswΛs

[
e−τ 2k+eτ ρ0

3 wρ0

]
dρ0 − γe−τ

∫
RΛswΛs[wρ0ρ0ρ0]dρ0

−
∫
RΛswΛs

{[
e−τ 2(k−eτ ρ0)

3

]
(p⋆w)ρ0

}
dρ0.
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As in Lemma 3.2. [3], we get∫
R(Λ

sL[w])Λswdρ0

= −1
3∥w∥2

Hs + 1
3∥w∥2

Hs−1 − 1
6∥w∥2

Hs −∥w∥2
Hs−1

= −1
2∥w∥2

Hs − 2
3∥w∥2

Hs−1 ≤ 0.

This completes the proof.

Lemma 2.3. Let s > 4. Then the operator L is invertible in Hs. Furthermore, it generates a
C0-semigroup (S(τ))τ≥0 in Hs.

Proof. First, we will show that L−1 exist. We need to prove that L is injective and surjective. Let
w ∈ D(L), such that L[w] = 0. Then

(2.3)
−1

3Λsw+ 1
3Λs(p⋆w)+Λs

[
e−τ 2k+eτ ρ0

3 wρ0

]
−γΛs[e−τwρ0ρ0ρ0]−Λs

{[
e−τ 2(k−eτ ρ0)

3

]
(p⋆w)ρ0

}
= 0.

Multiplying (2.3) by Λsw and integrating over R, we get∫
R

Λ
sL[w]Λswdρ0 =−1

2
∥w∥2

Hs −
2
3
∥w∥2

Hs−1 = 0.

This combining with the boundary conditions (1.6) gives that w = 0. So the operator L is injective.
On the other hand, for all g ∈H1 consider the equation

(2.4) L[w] = g.

Applying Λs to (2.4) and multiplying the result by Λsw, and then integrating over R, we get

∥w∥2
Hs ≤ ∥w∥2

Hs +
4
3
∥w∥2

Hs−1 =−2
∫
R

Λ
sgΛ

swdρ0.

It follows from the Young’s inequality that

∥w∥Hs ≤C∥g∥Hs.

Note that s > 4, then by the standard theory of elliptic-type partial differential equations,
there exists a unique weak solution w ∈ H1, moreover, we have w ∈ Hs+1 if g ∈ Hs. Thus, the
operator L is surjective.

Secondly, by the Lumer-Phillips theorem [6], we obtain that the operator L generates a C0-
semigroup (S(τ))τ≥0 in Hs. This completes the proof.

As a consequence, the results of Lemma 2.1-2.3 imply that the following existence theorem
holds.
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Proposition 2.1. Let s > 2. Then the Cauchy problem
d

dτ
w = Lw,

w(0) = w0

with zero boundary condition at far field exists a unique solution w(τ) = S(τ)w0, where w0 is the
initial data defined in (1.5).

Note that Proposition 2.1 combining with the Duhamel’s principle yield that the solutions of
Eq. (2.2) satisfying the following integral equation:

w(τ) = S(τ + lnT )w0 +
∫

τ

−lnT
S(τ − s) f (w(s))ds for τ ≥−lnT.

In order to remove the dependence of the integral equation on the blow up time T , we introduce a
new variable ŵ defined in [0,+∞) by

(2.5) ŵ(τ) = w(τ − lnT ).

Thus, the above integral equation is equivalent to

ŵ(τ) = S(τ)w0 +
∫

τ

0
S(τ − s) f (ŵ(s))ds for τ ≥ 0.

For convenience, we take ̂ away and rewrite it as

w(τ) = S(τ)w0 +
∫

τ

0
S(τ − s) f (w(s))ds for τ ≥ 0.

To show this integral equation exists a solution, we define the closed ball in Hs (s > 2) as follows:

Bδ = {w ∈Hs : ∥w∥Hs < δ ≪ 1}.

Define the map T as

T w(τ) = S(τ)w0 +
∫

τ

0
S(τ − s) f (w(s))ds.

We need to prove that T has a fixed point in the space Bδ for some δ < 1 by using the Banach
fixed point theorem. To achieve this, we introduce the following inequality.

Lemma 2.4. ([2]) Let s > 2. Then Hs ∩L∞ is an algebra, and

∥uv∥Hs ≤C(∥u∥L∞∥v∥Hs +∥u∥Hs∥v∥L∞),

where C is a positive constant depending upon s.

Lemma 2.5. Let s > 2 be an integer. Assume that ∥w0∥Hs+1 < δ for some sufficiently small δ > 0.
Then T is a self-mapping on Bδ . Moreover, T is a contraction mapping.
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Proof. By Lemma 2.4, we have

∥ f (w)∥Hs ≤ 3∥(p⋆w)(p⋆w)ρ0∥Hs

+2∥(p⋆w)ρ0(p⋆w−w)∥Hs +∥(p⋆w)((p⋆w)ρ0 −wρ0)∥Hs

≤ ∥p⋆w∥Hs∥(p⋆w)ρ0∥L∞ +∥(p⋆w)ρ0∥L∞∥(p⋆w−w)∥Hs

+∥p⋆w∥Hs∥(p⋆w)ρ0 −wρ0∥L∞.

Note that Hs ⊂ L∞ and w = Λ2(p(ρ0)⋆ v), then using Lemma 3.2 [3], we have

∥ f (w)∥Hs ≤C∥w∥2
Hs <Cδ

2 < δ

for sufficiently small δ . Thus, T is a self-mapping on Bδ .
To show that T is a contraction mapping, we choose w,w ∈ Bδ , by Lemma 2.4 and a direct

calculation shows that

∥ f (w)− f (w)∥Hs ≤ 3∥(p⋆w)(p⋆w)ρ0 − (p⋆w)(p⋆w)ρ0∥Hs

+2∥(p⋆w)ρ0(p⋆w−w)− (p⋆w)ρ0(p⋆w−w)∥Hs

+∥(p⋆w)((p⋆w)ρ0 −wρ0)− (p⋆w)((p⋆w)ρ0 −wρ0)∥Hs

≤ 3∥(p⋆ (w−w))(p⋆w)ρ0∥Hs +3∥(p⋆w)(p⋆ (w−w))ρ0∥Hs

+2∥(p⋆ (w−w))ρ0(p⋆w−w)∥Hs

+2∥(p⋆w)ρ0(p⋆ (w−w)− (w−w))∥Hs

+∥(p⋆ (w−w))((p⋆w)ρ0 −wρ0)∥Hs

+∥(p⋆w)((p⋆ (w−w))ρ0 − (w−wρ0))∥Hs

≤Cδ∥w−w∥Hs.

Thus,
∥T w(τ)−T w(τ)∥Hs ≤Cδ∥w−w∥Hs.

Since δ > 0 is sufficiently small, T is a contraction mapping.

We now return to the existence of solution for nonlinear Eq. (1.3).

Theorem 2.1. Let integer s > 4. The nonlinear Eq. (1.3) with the initial data (1.5) and boundary
conditions (1.6) admits a global solution v(τ,ρ) ∈ Hs. Moreover, if the initial data ∥v0∥Hs+1 < δ

for some sufficiently small δ > 0, then

∥v∥Hs ≤Cδe−2τ .
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Proof. By Lemma 2.5 and Banach fixed point theorem the map T has a fixed point in Bδ . The
fixed point is the solution of equation (2.2) and equation (1.3) has a global solution

(2.6) v(τ,ρ) = eτv(τ,ρ0) = eτ(p⋆w(τ,ρ0)),

where w(τ,ρ0) is a global solution of Eq. (2.2) given in Lemma 2.5, and ρ0 = e−τρ .
Furthermore, it follows from (2.6), that vρρ = e−τw. From Lemma 3.2 [3], we get

∥v∥Hs ≤ e−τ∥w∥Hs−2 ≤Ce−2τ∥w0∥Hs−2 <Cδe−2τ .

Acknowledgments

This paper is partially supported by Scientific Research Grant RD-08-28/12.01.2022 of Shu-
men University.

REFERENCES:
[1] Dullin H, Gottwald G, Holm D. An integrable shallow water equation with linear and nonlinear dispersion. Phy

Rev Lett 2001; 87:194501. 4

[2] Kato T. Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral theory
and differential equations (proc. sympos.), Dundee, 1974. In: Lecture notes in Math., vol. 48. Berlin: Springer;
1975. p. 25-70. Dedicated to Konrad Jorgens

[3] Kodzha M. Dynamical behavior of the strong dispersive nonlinear wave equation. Annual of Konstantin
Preslavsky University of Shumen, Vol. XXII C, 2021, pp. 3-11.

[4] Li H, Yan W. Asyptotic stability and instability of explicit self-similar waves for a class of nonlinear shallow water
equations. Commun Nonlinear Sci Numer Simulat 79 (2019); 104928

[5] Liu Y. Global existence and blowup solutions for a nonlinear shallow water equation. Math Ann 2006; 335:717-35.

[6] Pazy A. Semigroups of linear operators and applications to partial differential equations. New York: Springer-
Verlag; 1983.

[7] Tian LX, Gui GL, Liu Y. On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm
equation. Commun Math Phys 2005; 257:667-70.

[8] Zhou Y. Blow-up of solutions to the DGH equation. J Functional Anal 2007; 250:227-48.

- 48 -


