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ABSTRACT: In this paper we consider the Cauchy problem for the strong dispersive nonlinear
wave equation. We proof that the operator of the linearization arround the self-similar solutions gener-
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1 Introduction

In this paper we consider the following strong dispersive nonlinear wave equation
(1.1) Uy — Oty + 2kt + Sttty + Y(u— (xzuxx)xxx =a? (uyttyy + Uldyyy ).

Equation (1.1) is a version of the following well-known generalization of the Dullin-Gottwald-
Holm equation [1]

(1.2) Uy — O Uy + 200 + 3ttty + Vit = 0 (2t + Ul ).

Equation (1.2) is derived in [1] as a model for shallow water waves. The Cauchy problem for the

equation Dullin-Gottwald-Holm in both periodic and non periodic case was studied in [5, 7, 8].

For (1.2) the problem of the asymptotic stability of self-similar solution was considered in [4].

The authors construct explicit self-similar solutions and consider the dynamical behavior of the

solutions near to the self-similar solutions. Moreover the asymptotic stability also was considered.
For Eq. (1.1) self-similar solutions are in the form

1
f(tx) = =3 (Tx_t +2k>

and dynamical behavior arround of these solutions was considered in [3]. Consider the perturbation
of the form

u(t,x) = v(t,x) +u(t,x).

For v, we get the following equation

2 2
ve — 0% vgpp — He upy + 7 (?”F (k- P)) Vopp
(1.3)
—alye*y —v43vw, = 02 (2vpvpp + VWpop)
Ye Vopppp P pVpp ppp);

where T = —log(T —t),p = 7= and T > 0.
Equation (1.1) is can be written as a dissipative non-local equation

_ 2k+e” —
wr-l-%W—e T(#) Wp, + Ve TWPOPOPO_%(p*W)
_ 2(k—e”
(1.4) e (20 (pew)py 4+ 3(prw) (prwhpy

=2(pxw)py(pxw—w)+(pxw)((P*W)py —Wpy),
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where w(T,po) = (T, P0) — *Vpep, (T, P0), ¥(T, po) = e v(T,p) and py := e *p with the initial
data

w(0,p0) := wo(Po) = vo(Po) — &*Vpyp, (0, Po)
(1.5)
= up(x) — Oczug(x) + % (F +2k)

and the boundary conditions

(1.6) lim W(T,p()) =0, lim WpO(T,p()) =0.
|po|—>+-e0 |po|—+eo

Our aim in this paper to study the global well-posedness for Eq. (1.4) with the initial data
(1.5) and boundary conditions (1.6).

2  Main result

In this section we study the global well-posedness for Eq. (1.4) with the initial data (1.5) and
boundary conditions (1.6). We denote by L the following linear operator

Lw]:= —3w-+e "5(2k+e"po)wp, — Ye Wpypupy
(2.1)
+3(pxw) —e T3 (k—e"po)(pxW)py

then Eq. (1.4) can be rewritten as
(2.2) we = Llw|+ f(w),
where the nonlinear term
Fw) = =3(pxw)(pxw)py +2(pxw)py (P w—w) + (pxw)[(pxw)py — wp,-
Lemma 2.1. For s > 4, we have

o Liw|eH*, Vwe Z(L).

e L is a closed and densely defined linear operator in H’.

Proof. Itis a direct verification based on the definition of L in (2.1). OJ
Lemma 2.2. For s > 4, L is a dissipative operator in H?, i.e., (L[w],w); <O.

Proof. A direct calculations leads to

Jr (A*LIw])A*wdpg
Ll + L AW (e w)dpy
+ R AWA |:e—’[2k—‘—3—€p()wpoi| dpo —ve " [ AW [Wpoppeldpo

— e AwA? { [e’f—z(k}efpoq (P*w)po}dpo.
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As in Lemma 3.2. [3], we get

Jr(ALIw)) A wdpy

1
= —3lIwlig + 3lwlE — glwliis — Il
= —3lwlig — 3wl <o.
This completes the proof. 0

Lemma 2.3. Let s > 4. Then the operator L is invertible in H®. Furthermore, it generates a
Co-semigroup (S(7T))r>0 in H'.

Proof. First, we will show that L~! exist. We need to prove that L is injective and surjective. Let
w € Z(L), such that L[w] = 0. Then

—%ASW—F %As(p*w) +AS [e‘f—%gerpowpo}
(2.3)
_ _r2(k—e*
—YA*[e” "Wpypopo] —AS{ {e T%] (p*w)po} =0.

Multiplying (2.3) by A’w and integrating over R, we get
[ ALbIN gy = Sl — 5 Il =0
R I 3 et

This combining with the boundary conditions (1.6) gives that w = 0. So the operator L is injective.
On the other hand, for all g € H! consider the equation

(2.4) Liwl=g.

Applying A’ to (2.4) and multiplying the result by A’w, and then integrating over R, we get
4
il < Iwlf+ 3 Iwlcs = =2 | AeA'wdp.
It follows from the Young’s inequality that

Iwlles < Cllgllas-

Note that s > 4, then by the standard theory of elliptic-type partial differential equations,
there exists a unique weak solution w € H!, moreover, we have w € HsH! if g € H®. Thus, the
operator L is surjective.

Secondly, by the Lumer-Phillips theorem [6], we obtain that the operator L generates a Cy-
semigroup (S(7))z>0 in H*. This completes the proof. O

As a consequence, the results of Lemma 2.1-2.3 imply that the following existence theorem
holds.
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Proposition 2.1. Let s > 2. Then the Cauchy problem

j—rw =Lw,
w(0) = wy

with zero boundary condition at far field exists a unique solution w(t) = S(T)wo, where wy is the
initial data defined in (1.5).

Note that Proposition 2.1 combining with the Duhamel’s principle yield that the solutions of
Eq. (2.2) satisfying the following integral equation:

w(Tt) = S(T—HnT)wo+/znTS(‘C—s)f(w(s))ds for 7> —InT.

In order to remove the dependence of the integral equation on the blow up time 7', we introduce a
new variable w defined in [0, o) by

(2.5) w(t) =w(t—InT).

Thus, the above integral equation is equivalent to
T
(1) = S(T)wo + / S(t—s)f(#(s))ds for > 0.
0
For convenience, we take ~ away and rewrite it as
T
w(t) = S(T)wo + / S(7—s) f(w(s))ds for > 0.
0
To show this integral equation exists a solution, we define the closed ball in H* (s > 2) as follows:

Bs={weHl’ : ||w|m < d < 1}.

Define the map .7 as .
Tw(t) = S(T)wo + /0 S(7—s) f(w(s))ds.

We need to prove that .7 has a fixed point in the space Bg for some é < 1 by using the Banach
fixed point theorem. To achieve this, we introduce the following inequality.

Lemma 2.4. ([2]) Let s > 2. Then H* NIL™ is an algebra, and
Juvllms < C(llul [ v [ees + [l [V]]L=),
where C is a positive constant depending upon s.

Lemma 2.5. Let s > 2 be an integer. Assume that |wo||ys+1 < 8 for some sufficiently small § > 0.
Then T is a self-mapping on Bg. Moreover,  is a contraction mapping.
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Proof. By Lemma 2.4, we have
LF ) [ < 3] (pxw) (P w)po |
F2([(prw)py (pxw —w)|lms + | (P w) ((PHW)py —Wpo) |
< o wllesl[(pHw)pollL= + | (% w) gl | (P w — w) [l
Flprwlles|[(pxw)py — wpy L=
Note that H' C I and w = A?(p(po) * V), then using Lemma 3.2 [3], we have

£ W)|ms < Cllwl|fys < C8* < &

for sufficiently small §. Thus, .7 is a self-mapping on Bg.
To show that .7 is a contraction mapping, we choose w,w € Bg, by Lemma 2.4 and a direct
calculation shows that

1Fw) = f Ol < 3[[(pAw) (prw)pg = (p+W) (P *W) py 1
F2[(pxw)py (prw =w) = (pxW) gy (p*W —W) |15
+(pAw)((pxw)py = wpy) = (P W) ((P*W) py — Wpy )| e

<3[(px (w=w))(prw)py [l + 3| (P W) (px (W —=W)) po [l

F2[(px (w=w))py (pHw —w) [
+2[[(pW)pg (P (W = W) = (W =W))||ms
F[(px (w—=w))((pxw)py —wp, )|
(W) ((px (w=w))py — (W —=Wpy)) [

< C5||w — |5

Thus,
| Tw(t)— Tw(7)|ms < CO||lw—W||ms.

Since 0 > 0 is sufficiently small, .7 is a contraction mapping. [

We now return to the existence of solution for nonlinear Eq. (1.3).
Theorem 2.1. Let integer s > 4. The nonlinear Eq. (1.3) with the initial data (1.5) and boundary
conditions (1.6) admits a global solution v(t,p) € H*. Moreover, if the initial data ||vo||gs+1 <
for some sufficiently small 6 > 0, then

[v||gs < C8e™ 2%
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Proof. By Lemma 2.5 and Banach fixed point theorem the map .7 has a fixed point in Bg. The
fixed point is the solution of equation (2.2) and equation (1.3) has a global solution

(26) V(Tap) = €TV(T,p0) = er(p*w('l:,po)),

where w(7, po) is a global solution of Eq. (2.2) given in Lemma 2.5, and pg = ¢ “p.

Furthermore, it follows from (2.6), that vy, = e~ "w. From Lemma 3.2 [3], we get

V|l < e F|[wlgs—2 < Ce 7 ||lwo||ggs—2 < CSe 7.
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