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ABSTRACT: Dynamic mode decomposition (DMD) is a data-driven mathematical technique

to extract spectral information from complex data coming from numerical or experimental studies of

various systems. It is an equation-free method in the sense that it does not require knowledge of the

underlying governing equations. In this article we explore and demonstrate a new algorithm for calcu-

lating the DMD decomposition.
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1 Introduction

Introduced for the first time by Schmid [1] in the fluid mechanics community, dynamic mode

decomposition (DMD) is a method for analyzing data from numerical simulations and laboratory

experiments. The method constitutes a mathematical technique for identifying spatiotemporal

coherent structures from high-dimensional data. It combines the favorable features from two of the

most powerful data analytic tools: Proper orthogonal decomposition (POD) in space and Fourier

transforms in time. It is relatively easy to implement and makes no additional assumptions about

the underlying dynamics. DMD method can be considered to be a numerical approximation to

Koopman spectral analysis, and in this sense it is applicable to nonlinear dynamical systems (see

[2, 3]). It is an equation-free in the sense that it does not require knowledge of the underlying

governing equations and it is entirely data-driven.

DMD method has application in many different fields such as video processing [12], epi-

demiology [13], neuroscience [15], financial trading [16, 17, 18], robotics [14], cavity flows [4, 6]

and various jets [2, 5]. For a review of the DMD literature, we refer the reader to [7, 8, 9, 19].

The remainder of this work is organized as follows: in the rest of Section 1 we describe the

DMD algorithm, in Section 2, we explore and discuss a new approach for DMD computation and

in Section 3 we present example demonstrating the new algorithm. The conclusion is in Section 4.

2 Dynamic Mode Decomposition

We follow the definition of DMD method introduced in [8]. Suppose we have two data sets

(1) X = [x0, . . . ,xm] and Y = [y0, . . . ,ym] ,

such that yk = f (xk), where f is a map associated with the evolution of a dynamical system

(2) ẏ(x, t) = f (y(x, t)) .

Assume that there exist a linear map A such that

(3) Y ≈ AX .

The DMD method computes the eigendecomposition of the best fit linear operator A. The eigen-

vectors of A are called DMD modes and each mode corresponds to a particular eigenvalue of A,

also called DMD eigenvalue.
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We can approximate the operator A by using Eq.(3) and singular value decomposition of

X =UΣV ∗ in a least-squares sense

(4) A ≈ Y X† = YVΣ−1U∗
,

where X† is the pseudoinverse of X . This solution is the minimizer of

‖Y −AX‖F

in the case of over-determined AX =Y and A is the minimum norm solution, of AX =Y in the case

that the equation is under-determined, where ‖.‖F denotes the standard Frobenius norm.

It should be noted that if n is large, i.e. n ≫ 1, calculating the eigendecomposition of the

n×n matrix A can be prohibitively expensive. Therefore, the goal is to calculate eigenvectors and

eigenvalues without explicit representation or direct manipulations of A. The DMD modes and

eigenvalues are intended to approximate the eigenvectors and eigenvalues of A.

We can derive from (4) a low-dimensional representation (if reduced SVD of X is performed)

(5) Ã =U∗AU =U∗YV Σ−1

by using similarity transformation with matrix U . In practice, we calculate the eigendecomposition

of reduced order matrix Ã.

Exact DMD algorithms

The following algorithm provides a robust method for computing DMD modes and eigen-

values.

Algorithm 1: Exact DMD

Input: Data matrices X and Y , and rank r.

Output: DMD modes Φ and eigenvalues Λ

1: Procedure DMD(X,Y,r).

2: [U,Σ,V ] = SVD(X ,r) (Reduced r-rank SVD of X)

3: Ã =U∗YV Σ−1 (Low-rank approximation of A)

4: [W,Λ] = EIG(Ã) (Eigen-decomposition of Ã)

5: Φ =YVΣ−1W (DMD modes of A)

6: End Procedure

The standard definition of DMD method assumes a sequential set of data vectors {zk}
m
k=0,

rather than as a set of pairs {(xk,yk)}m
k=1. Note that the original formulation is a special case of

(1), with xk = zk−1 and yk = zk.

The algorithm of the DMD method introduced in [1] differs slightly from the one described

above. The only difference is that the DMD modes (at step 5) are computed by the formula

(6) Φ =UW.
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The DMD modes calculated by Algorithm 1 are called exact DMD modes, because Tu et al. in [8]

prove that these are exact eigenvectors of matrix A. The modes computed by (6) are referred to as

projected DMD modes.

Finally, knowing the DMD modes φi and eigenvalues λi, a continuous solution of associated

with (2), locally linear system

(7) ẏ(t) = Ay(t) , with initial condition x0 = x(0)

can be constructed as a function of time via equation

(8) y(t) = Φexp(Ωt)b ,

where Φ = [φ1, . . . ,φr], Ω = diag{ω1, . . . ,ωr}, b = [b1, . . . ,br]
T . Vector b consists the coefficients

of the initial condition x0 in the eigenvector basis, so that x0 = Φb. Continuous time eigenvalues

(Fourier modes) ω j can be converted from the DMD discrete-time eigenvalues λ j via

(9) ω j =
ln(λ j)

△t
, j = 1, . . . ,r .

From the expression (8) a prediction of the future state of the system is achieved for any time t. A

direct result of the formulation of the expansion of the solution as in (8) is that one now has access

to characteristic spatiotemporal features of the system. The rate of growth/decay and frequency

of oscillations of each DMD mode is given by the eigenvalue ω j and the time dependent term

exp(ω jt) gives us the dynamics associated to each mode φ j scaled with a constant b j.

3 Alternatives of DMD algorithm

We will first describe a new algorithm for computing the DMD modes and eigenvalues of

the linear operator A, introduced in [20].

An alternative of exact DMD algorithm

The DMD algorithm presented in previous section use the advantage of low dimensionality

in the data to make a low-rank approximation of the operator A that best approximates the nonlinear

dynamics of the data set. The main idea of new algorithm is to extract the modal structures from

matrix

(10) Â = Σ−1U∗YV ,

instead from the matrix Ã defined by (5). The two matrices Ã and Â are similar, with transformation

matrix Σ, therefore have the same eigenvalues. Let

(11) ÂŴ = Ŵ Λ

be eigendecomposition of matrix Â. Then, using relations (4) and (11) we can easily obtain the

following expression

AUΣŴ =UΣŴΛ ,

which yields the formula

(12) Φ̂ =UΣŴ ,
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for the DMD modes. Expression (12) corresponds to projected DMD modes defined by (6). It can

be shown that matrix

(13) Φ̂ = YVŴ ,

corresponds to exact DMD modes Φ =YVW Σ−1 defined at Step 5 in Algorithm 1, (see Theorem 1

below).

Now, we are ready to formulate an alternative to exact DMD method described in Algo-

rithm 1, see Algorithm 2 below.

Algorithm 2: Alternative exact DMD

Input: Data matrices X and Y , and rank r.

Output: DMD modes Φ̂ and eigenvalues Λ

1: Procedure DMD(X,Y,r).

2: [U,Σ,V ] = SVD(X ,r) (Reduced r-rank SVD of X)

3: Â = Σ−1U∗YV (Low-rank approximation of A)

4: [Ŵ ,Λ] = EIG(Â) (Eigen-decomposition of Â)

5: Φ̂ =YVŴ (DMD modes of A)

6: End Procedure

Although from a computational point of view the matrices Â and Ã are similar, because have

the same multipliers, calculation of DMD modes Φ̂ in Algorithm 2 is more cost efficient than the

calculation of matrix Φ in Algorithm 1. The following theorem holds.

Theorem 1. [20] Let (λ ,w), for λ 6= 0, be an eigenpair of Â defined by (10), then the correspond-

ing eigenpair of A is (λ , ϕ̂), where

ϕ̂ =YV w.

An alternative of projected DMD algorithm

We can formulate second alternative to DMD method by using Eq.(12), see Algorithm 3

below.

In the following theorem we will prove that eigenvectors defined by (12) are the projected

DMD modes.

Theorem 2. Let (λ ,w), for λ 6= 0, be an eigenpair of Â defined by (10), and let PX denotes the

orthogonal projection matrix onto the column space of X. Then the vector

ϕ =UΣw

is an eigenvector of PX A with eigenvalue λ . Furthermore, if ϕ̂ = YVw is given by (13), then

PX ϕ̂ = λϕ .
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Algorithm 3: Alternative projected DMD

Input: Data matrices X and Y , and rank r.

Output: DMD modes Φ̂ and eigenvalues Λ

1: Procedure DMD(X,Y,r).

2: [U,Σ,V ] = SVD(X ,r) (Reduced r-rank SVD of X)

3: Â = Σ−1U∗YV (Low-rank approximation of A)

4: [Ŵ ,Λ] = EIG(Â) (Eigen-decomposition of Â)

5: Φ̂ =UΣŴ (DMD modes of A)

6: End Procedure

Proof. From the SVD X = UΣV , the orthogonal projection onto the column space of X is

given by PX =UU∗. From (5), (10) and the presentation

Σ−1U∗AUΣ = Â

we get

PXAϕ =UU∗AUΣw =UΣ(Σ−1U∗AUΣ)w =UΣÂw = λUΣw = λϕ .

From last expression it follows that ϕ is an eigenvector of PXA with eigenvalue λ . Let now express

PX ϕ̂ =UU∗YVw =UΣ(Σ−1U∗YV )w =UΣÂw = λUΣw = λϕ .

The proof is completed.

4 Numerical illustrative example

To illustrate Algorithm 3 introduced in Section 3, we consider a simple example of two

mixed spatiotemporal signals (presented in [1, 8]).

Let us have two signals of interest

f1(x, t) = sech(x+6− t)exp(i2.3t)

and

f2(x, t) = 2sech(x) tanh(x)exp(i2.8t),

and the mixed signal is

(14) f (x, t) = sech(x+3)exp(i2.3t)+2sech(x) tanh(x)exp(i2.8t).

This example is demonstrated in [9] with the original DMD algorithm.

The individual spatiotemporal signals f1(x, t) and f2(x, t) are illustrated in Figure 2 (i)-(ii).

The mixed signal x(t)= f1(x, t)+ f2(x, t) is illustrated in Figure 2 (iii). The two frequencies present

are ω1 = 2.3 and ω2 = 2.8, which have distinct spatial structures.

Figure 1 shows the first 50 singular values of matrix X . Although the dynamics are con-

structed from a two-mode interaction, we need approximately 10 modes to produce an accurate

reconstruction and characterize the dynamics.
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Figure 1: The singular value decay shows that at least rank-10 reconstruction is needed.

Figure 2: Spatiotemporal dynamics of two signals with translation (i) f1(x, t) and (ii) f2(x, t) of Example 1 that

are mixed in (iii) f1(x, t)+ f2(x, t). The alternative exact DMD is shown in (iv).

We perform a rank-10 approximate reconstruction (8) by using Algorithm 2, to illustrate

the low-dimensional nature of the decomposition. The corresponding approximate reconstruction

of x(t) is shown in Figure 2 (iv). The reconstruction is almost perfect. The results show that

alternative algorithms (Algorithm 2 and Algorithm 2) produce the same result as the exact DMD

procedure.

5 Conclusion

The purpose of this study was to explore a new algorithm for computing approximate DMD

modes and eigenvalues. We demonstrate the performance of the presented algorithm with numeri-
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cal results. From the obtained results we can conclude that the introduced approach gives identical

results with those of the exact DMD method.
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