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MERGING OF BIVARIATE COMPOUND POISSON
RISK PROCESSES WITH SHOCKS∗

PAVLINA K. JORDANOVA

ABSTRACT: The paper considers an example of reducing a bivariate Compound Poisson risk
process with common shocks to an univariate Cramer-Lundberg risk model. Then using the results
about Compound Poisson risk model the main numerical characteristics and distributions related to the
new model are obtained. Analogous approach can be applies for any number of compound Poisson
processes. It can be useful also in renewal theory or queuing theory for simplifying systems or building
stochastically equivalent models.
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1 Introduction
The theory of Compound Poisson risk processes origins since the works of Filip Lundberg

[9] and Harald Cramer [3] and finds good applications nowadays. In 1967 Marshall and Olkin [10],
[11] investigate a bivariate Poisson model with dependent coordinates. They lay the foundations
of multivariate models with common shocks. Particular cases of such models are considered for
example in Cossette and Marceau [2], or Wand [19]. In any of them the task for characterising
of total claim amount distribution reduces to calculations of multivariate compound distributions.
Recursive algorithms for bivariate compound distributions of Panjer’s family are obtained e.g.
in Panjer and Willmot[13, 14], Hesselager [12] among others. Sundt and Vernic [16, 17, 18]
generalize these recursions to the multivariate case. Recently Jordanova and Stehlik [8] show that
in many cases these multivariate risk models can be reduced to classical Cramer-Lundberg model.
Here we consider an example of merging of Compound Poisson processes. More general results
could be seen in Jordanova and Stehlik [8].

The organization of the paper is the following...
Along the paper⊥means independent, HPP(λ ) is an abbreviation of "homogeneous Poisson

process with intensity λ > 0", gξ (x) = Ezξ is the probability generating function of the random
variable ξ and ∑

0
i=1 = 0. The independence between the summands and the number of summands

in the following random sums can be relaxed without changing the final results if we assume that
the compounding distributions describe the distribution of the summands, given the number of
summands.

2 Description of the model
Consider a risk process R consisting of two dependent types of polices. The dependent

counting processes M1 and M2 of both types are compound Poisson process Bk = {Bk(t) : t ≥ 0},
k = 1,2 with common shocks, described by independent compound Poisson process B0 = {B0(t) :
t ≥ 0}. More precisely for all t ≥ 0

(1) M1(t) = B1(t)+B0(t), M2(t) = B2(t)+B0(t),

∗The author is grateful to the bilateral projects Bulgaria - Austria, 2016-2019, "Feasible statistical modelling for
extremes in ecology and finance", Contract number 01/8, 23/08/2017, WTZ Project No. BG 09/2017, and the scientific
project RD-08-125/06.02.2018, Shumen University.
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where the processes B0, B1 and B2 are independent, and for k = 0,1,2,

(2) Bk(t) =
Nk(t)

∑
i=1

ηki, Nk ∼ HPP(λk), gk(z) = Ezηk1, z≥ 0, {ηki}∞
i=1⊥Nk,

ηk1,ηk2, ... independent identically distributed (i.i.d.), and η11⊥η21⊥η01.
S = {S(t) : t ≥ 0} is the total claim amount process. For all t ≥ 0

S(t) = S1(t)+S2(t),(3)

S1(t) =
B1(t)

∑
i=1

Y1i +
B0(t)

∑
i=1

Y0i, {Yki}∞
i=1⊥Bi, k = 0,1,(4)

S2(t) =
B2(t)

∑
i=1

Y2i +
B0(t)

∑
i=1

Y0i, {Yki}∞
i=1⊥Bi, k = 0,2.

Yk1,Yk2, ... i.i.d., and Y01⊥Y11⊥Y21.
R = {R(t) : t ≥ 0} is the risk reserve process and for all t ≥ 0

(5) R(t) = u+ ct−S(t),

where u≥ 0 is the initial capital and c > 0 is the premium income rate.

3 Stochastic equivalent models
In this section first we obtain a stochastically equivalent presentation of the bivariate counting

process {(M1(t),M2(t)) : t ≥ 0} which shows that it is a particular case of multivariate compound
Poisson processes of type I, discussed in Sundt and Vernic [17, 18]. Then, in Theorem 2 we derive
the stochastic equivalent presentation of the processes (S1,S2) as a compound Poisson process of
Type I. Finally, in Theorem 3 we describe a stochastic equivalence presentation of the risk process
R which allows us to state that this is a Cramer-Lundberg (C-L) risk process.

Denote by λ = λ1 +λ2 +λ0. In order to formulate our main results let us define a random
vector (I1, I2, I0) with probability mass function (p.m.f.)

(6) P(I1 = 1, I2 = 0, I0 = 0) =
λ1

λ
, dP(I1 = 0, I2 = 1, I0 = 0) =

λ2

λ
, P(I1 = 0, I2 = 0, I0 = 1) =

λ0

λ
,

and zero otherwise. Assume random vectors (I11, I21, I01),(I12, I22, I02), ... are i.i.d. with p.m.f.
(6) and (η11,η21,η01),(η12,η22,η02), ... are i.i.d. with independent coordinates with probability
generating functions (p.g.fs.) correspondingly g1,g2,g0. Denote by N ∼ HPP(λ ),

A1(t) =
N(t)

∑
i=1

(I1iη1i + I0iη0i),(7)

A2(t) =
N(t)

∑
i=1

(I2iη2i + I0iη0i).(8)

Assume N, (I11, I21, I01),(I12, I22, I02), ... and (η11,η21,η01),(η12,η22,η02), ... are independent.
Theorem 1. The bivariate processes (M1,M2) and (A1,A2) coincide in the sense of their

finite dimensional distributions.
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Proof: All processes (M1,M2) and (A1,A2) have homogeneous and independent additive
increments and they start from the coordinate beginning, therefore in order to prove their stochas-
tic equivalence it is enough to prove equality of their univariate time intersections. Due to the
uniqueness of the correspondence between the probability laws and their p.g.fs. it is enough to
derive equality between the p.g.fs. Consider t > 0, z1 > 0 and z2 > 0. The definition and the mul-
tiplicative property of p.g.fs., (1), (2), and the well known form of the p.g.f. of compound Poisson
processes imply

E
[
zM1(t)

1 zM2(t)
2

]
= E

[
zB1(t)+B0(t)

1 zB2(t)+B0(t)
2

]
= E

[
zB1(t)

1

]
E
[
zB2(t)

2

]
E
[
(z1z2)

B0(t)
]

= E
[

z∑
N1(t)
i=1 η1i

1

]
E
[

z∑
N2(t)
i=1 η2i

2

]
E
[
(z1z2)

∑
N0(t)
i=1 η0i

]
= exp{−λ1t[1−g1(z1)]}exp{−λ2t[1−g2(z2)]}exp{−λ0t[1−g0(z1z2)]}
= exp{−(λ1 +λ2 +λ0)t−λ1tg1(z1)−λ2tg2(z2)−λ0tg0(z1z2)}

= exp
{
−(λ1 +λ2 +λ0)t

[
1− λ1

λ
g1(z1)−

λ2

λ
g2(z2)−

λ0

λ
g0(z1z2)

]}
.

The definitions (7), (8), the formula for double expectations, the independence between N and the
other components of the processes A1 and A2 entail

E
[
zA1(t)

1 zA2(t)
2

]
= E

[
z∑

N(t)
i=1 (I1iη1i+I0iη0i)

1 z∑
N(t)
i=1 (I2iη2i+I0iη0i)

2

]
=

∞

∑
n=0

E
[
z∑

n
i=1(I1iη1i+I0iη0i)

1 z∑
n
i=1(I2iη2i+I0iη0i)

2

]
P(N(t) = n)

By the multiplicative property of p.g.fs. and (6),

(9) E
[
zA1(t)

1 zA2(t)
2

]
=

∞

∑
n=0

{
E
[
zI1iη11+I01η01

1 zI21η21+I01η01
2

]}n
P(N(t) = n).

Now (6) and the total probability formula imply

(10) E
[
zI1iη11+I01η01

1 zI21η21+I01η01
2

]
=

λ1

λ
g1(z1)+

λ2

λ
g2(z2)+

λ0

λ
g0(z1z2).

Therefore the fact that N(t)∼ HPP(λ t) entails

E
[
zA1(t)

1 zA2(t)
2

]
=

∞

∑
n=0

{
λ1

λ
g1(z1)+

λ2

λ
g2(z2)+

λ0

λ
g0(z1z2)

}n

P(N(t) = n)

= exp
{
−λ t

[
1− λ1

λ
g1(z1)+

λ2

λ
g2(z2)+

λ0

λ
g0(z1z2)

]}
which is exactly E

[
zM1(t)

1 zM2(t)
2

]
, and completes the proof.

Theorem 2. The bivariate total claim amount processes (S1,S2), described in (5) is a com-
pound poisson Process of type I (which means with one and the same number of summands). It is
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stochastically equivalent to the process (S3,S4), where

S3(t) =
N(t)

∑
n=1

[
I1n

η1n

∑
i=1

Y1i + I0n

η0n

∑
i=1

Y0i

]
, t ≥ 0,(11)

S4(t) =
N(t)

∑
n=1

[
I2n

η2n

∑
i=1

Y2i + I0n

η0n

∑
i=1

Y0i

]
, t ≥ 0,(12)

where (I11, I21, I01) is a vector with distribution (6) and the other random elements are the same
as those described in (6), (7) and (8). The equivalence is in the sense of their finite dimensional
distributions.

Proof: All processes have homogeneous and independent additive increments and they start
from the coordinate beginning, therefore in order to prove their stochastic equivalence it is enough
to prove equality of their univariate time intersections. Due to the uniqueness of the correspon-
dence between the probability laws and their Laplace-Stieltjes transforms(LSTs), it is enough to
derive equality between the (LSTs).

Consider t ≥ 0, z1 ≥ 0 and z2 ≥ 0. The definition of LSTs., (5), and the multiplicative
property of LSTs, the formula for relation between the LST of compound distribution and LST of
summands and the number of summands, the well known form of the LST of compound Poisson
processes, (2), (1) imply

Ee−z1S1(t)−z2S2(t) = Ee−z1 ∑
B1(t)
i=1 Y1i−(z1+z2)∑

B0(t)
i=1 Y0i−z2 ∑

B2(t)
i=1 Y2i

= Ee−z1 ∑
B1(t)
i=1 Y1iEe−(z1+z2)∑

B0(t)
i=1 Y0iEe−z2 ∑

B2(t)
i=1 Y2i

= gB1(t)(Ee−z1Y11)gB0[Ee−(z1+z2)Y01]gB2(t)(Ee−Y21)

= e−λ1t[1−g1(Ee−z1Y11)]e−λ0t{1−g0[Ee−(z1+z2)Y01 ]}e−λ2t[1−g2(Ee−z2Y21)]

= e−(λ1+λ2+λ3)t
{

1−
[

λ1
λ

g1(Ee−z1Y11)+
λ0
λ

g0[Ee−(z1+z2)Y01 ]+
λ2
λ

g2(Ee−z2Y21)
]}
.

From the other side if we consider z3 ≥ 0 and z4 ≥ 0, the definitions (11), (12), the formula
for double expectations, the independence between N and the other components of the processes
S3 and S4 entail

Ee−z3S3(t)−z4S4(t) = Ee−z3 ∑
N(t)
n=1

[
I1n ∑

η1n
i=1 Y1i+I0n ∑

η0n
i=1 Y0i

]
−z4 ∑

N(t)
n=1

[
I2n ∑

η2n
i=1 Y2i+I0n ∑

η0n
i=1 Y0i

]
=

∞

∑
n=0

{
Ee−z3I11 ∑

η11
i=1 Y1i−(z3+z4)I01 ∑

η01
i=1 Y0i−z4I21 ∑

η21
i=1 Y2i

}n
P(N(t) = n).

Now (6) and the total probability formula and the formula about the relation between the for LST
of a compound, the LST of the summands and p.g.f. of the number of summands, imply

Eexp

{
−z3I11

η11

∑
i=1

Y1i− (z3 + z4)I01

η01

∑
i=1

Y0i− z4I21

η21

∑
i=1

Y2i

}
=

=
λ1

λ
Ee−z3 ∑

η11
i=1 Y1i +

λ0

λ
Ee−(z3+z4)∑

η01
i=1 Y0i +

λ2

λ
Ee−z4 ∑

η21
i=1 Y2i

=
λ1

λ
g1(Ee−z3Y11)+

λ0

λ
g2(Ee−(z3+z4)Y01)+

λ2

λ
g2(Ee−z4Y21)

- 52 -



Merging of bivariate compound Poisson Risk processes with shocks

Therefore the formula for p.g.f. of Poisson distribution entails

Ee−z3S3(t)−z4S4(t) =
∞

∑
n=0

{
λ1

λ
g1(Ee−z3Y1i)+

λ0

λ
g2(Ee−(z3+z4)Y0i)+

λ2

λ
g2(Ee−z4Y2i)

}n

P(N(t) = n)

= e−λ t
{

1−
[

λ1
λ

g1(Ee−z3Y11)+
λ0
λ

g0[Ee−(z3+z4)Y01 ]+
λ2
λ

g2(Ee−z4Y21)
]}
.

which is exactly Ee−z1S1(t)−z2S2(t). In this way the proof is completed.
Now we are ready to say that the risk process R, defined in (5) is a C-L risk process.
Theorem 3. The risk process, described in (5) is stochastically equivalent to the process

R(t) = u+ ct−
N(t)

∑
n=1

[
I1n

η1n

∑
i=1

Y1i +2I0n

η0n

∑
i=1

Y0i + I2n

η2n

∑
i=1

Y2i

]
, t ≥ 0.

The proof of Theorem 3 follows immediately from the definition (5) of the risk process R,
the definitions of S, S1 and S2, (see 4, and 5) and Theorem 2.

4 The characteristics of the risk model R
In this section using the well known results about the C-L risk model we obtain the numerical

characteristics, conditional distributions and probabilities for ruin of the risk model (5).
Denote by

τ(u) = in f{t > 0 : R(t)< 0|R(0) = u},u≥ 0, in f = ∞, the time of ruin with initial capital u≥ 0;

ψ(u) = P(τ(u)< ∞|R(0) = u), the probability for ruin in infinite horizon;

δ (u) = 1−ψ(u), the probability for survival in infinite horizon;

λ = λ1 + λ2 + λ3 is the intensity of the merged N(t) ∼ HPP(λ ). Then it is the parameter of
the exponential distribution, which models the inter-arrival times in the merged risk process
presentation.

The mixed claim size in the merged risk process presentation are

Ys := I1s

η1s

∑
i=1

Y1i +2I0s

η0s

∑
i=1

Y0i + I2s

η2s

∑
i=1

Y2i, s = 1,2, ...

Note that these r.vs. are i.i.d.

In the next theorem using the results for the Cramer-Lundberg model (see e.g. Grandell [6],
Gerber [5], Embrechts, Klueppelberg, Mikosch [4] Rolski, Schmidli, Schmidt, Teugels [15]) we
characterise the risk process R.

Theorem 4. Consider the risk model R, defined in (5). Denote by

µ = λ1E(η11)E(Y11)+2λ0E(η01)E(Y01)+λ2E(η21)E(Y21).

Then

i) In case when the expectations are finite, the safety loading is ρ = c
µ
− 1 and the net profit

condition is c > µ.
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ii) In case when the expectations are finite and the net profit is satisfied ψ(0) = µ

c .

iii) The general formula for the Laplace - Stieltjes transform of δ (u) is

lδ (s) =
s(c−µ)

cs−λ −λ1g1(Ee−sY11)−λ2g2(Ee−sY21)−λ0g0(Ee−2sY01)
.

iv) The distribution of the deficit at the time of ruin, given that ruin with initial capital zero happen
has the following distribution

P(−R(τ(0)+)≤ x|τ(0)< ∞) =

=
2

∑
k=1

{
λk

µ

∫ x

0
P

(
ηk1

∑
i=1

Yk1 ≥ y

)
dy

}
+

λ0

µ

∫ x

0
P

(
η01

∑
i=1

Y01 ≥
y
2

)
dy.

v) Given the second moments exist,

E(−R(τ(0)+)|τ(0)< ∞) =

=
1
µ

{
2

∑
k=1

λk
[
E(ηk1)D(Yk1)+E(η2

k1)[E(Yk1)]
2]+4λ0

[
E(η01)D(Y01)+E(η2

01)[E(Y01)]
2]} .

E(τ(0)|τ(0)< ∞) =

=
∑

2
k=1 λk

[
E(ηk1)D(Yk1)+E(η2

k1)[E(Yk1)]
2]+4λ0

[
E(η01)D(Y01)+E(η2

01)[E(Y01)]
2]

µ(c−µ)
.

vi) The joint distribution of the severity of (deficit at) ruin and the risk surplus just before the ruin
with initial capital zero is:

P(−R(τ(0)+)> x,R(τ(0)−)> y|τ(0)< ∞) =

=
2

∑
k=1

{
λk

µ

∫ x+y

0
P

(
ηk1

∑
i=1

Yk1 ≥ y

)
dy

}
+

λ0

µ

∫ x+y

0
P

(
η01

∑
i=1

Y01 ≥
y
2

)
dy

vii) The distribution of the claim causing ruin is

P(R(τ(0)−)−R(τ(0)+)≤ x|τ(0)< ∞) =

=
2

∑
s=1

λs

µ

∫ x

0
ydP(

ηs1

∑
i=0

Ys1 < y)+
2λ0

µ

∫ x
2

0
ydP(

η01

∑
i=0

Y01 < y).

viii) If the distribution of Y1 is domilatetly varying which means that

limsup
x→∞

λ1P(∑η11
i=0Y11 <

x
2)+λ2P(∑η21

i=0Y21 <
x
2)+λ0P(∑η01

i=0Y01 <
x
4)

λ1P(∑η11
i=0Y11 < x)+λ2P(∑η21

i=0Y21 < x)+λ0P(∑η01
i=0Y01 <

x
2)

< ∞,

then

lim
u→∞

ψ(u)∫ u
0
[
∑

2
k=1 λkP

(
∑

ηk1
i=1Yk1 ≥ y

)]
+λ0P

(
∑

η01
i=1Y01 ≥ y

2

)
dy

=
1

c−µ
.
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ix) For this model, the small claim condition means that there exists the Cramer-Lundberg expo-
nent ε which is the smallest possible solution of the equation

λ1[1−g1(EeεY11)]+λ0[1−g0(Ee2εY01)]+λ2[1−g2(EeεY21)] = cε.

In that case ψ(u) ≤ e−εu and choosing α ∈ (0,1) we can find appropriate premium income
rate c, in such a way that ψ(u)≤ α .

If additionally

2

∑
k=1

{
λk

µ

∫
∞

0
xeεxP

(
ηk1

∑
i=1

Yk1 ≥ x

)
dx

}
+

λ0

µ

∫
∞

0
xeεxP

(
η01

∑
i=1

Y01 ≥
x
2

)
dx < ∞,

then the following Cramer-Lundberg approximation of the probability of ruin holds

lim
u→∞

eεu
ψ(u) =

c−µ

ε
{

∑
2
k=1[λk

∫
∞

0 xeεxP
(
∑

ηk1
i=1Yk1 ≥ x

)
dx]+λ0

∫
∞

0 xeεxP
(
∑

η01
i=1Y01 ≥ x

2

)
dx
} .

Scetch of the proof: The Total probability formula entails that the c.d.f. of Y1 is

(13) FY1(x) =
λ1

λ
P(

η11

∑
i=0

Y11 < x)+
λ2

λ
P(

η21

∑
i=0

Y21 < x)+
λ0

λ
P(

η01

∑
i=0

Y01 <
x
2
)

Using the double expectation formula we obtain their mean and LST

EY1 =
λ1

λ
E(η1s)E(Y11)+

2λ0

λ
E(η0s)E(Y01)+

λ2

λ
E(η2s)E(Y21) =:

µ

λ
,

Ee−sY1 =
λ1

λ
g1(Ee−sY11)+

λ2

λ
g2(Ee−sY21)+

λ0

λ
g0(Ee−2sY01).

In order to complete the proof we just replace these expressions in the well known formulae
for the C-L model.

5 Conclusive remarks
Due to their feasibility risk models with dependent classes of business have recently attracted

much attention is scientific literature. Although in general multivariate case with common shocks
the formulae for their characteristics are huge, here using the bivariate model we show that these
models can be reduced to the C-L case. This allows us to use already known results which reason-
ably simplifies the calculations. In analogous way we can reduce similar multivariate (with more
then two classes of business) risk models with arbitrary common shocks to C-L model. Many
particular cases can investigated. For example the numbers of claims in different groups can be of
any discrete integer probability type. η01, η11, η21 can be constants, Poisson, Geometric, Negative
binomial, Truncated geometric, Logarithmic, Binomial ets. We mention these, because there are
explicit formulae and Panjer’s type recursions (see [15]) for their compounds. These three r. vs.
are not obligatory identically distributed. In case when the number of summands is governed by
some distribution which has no investigated compound then higher-order asymptotic expansions
presented e.g. in [1] and the references there in can be very useful. The experience of the author
shows that the Monte-Carlo method is flexible, easy to implement, not so time consuming, and
gives good results. See e.g. [7].
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