НУЛЕВИ МНОЖЕСТВА НА ХИПЕР-ПРОИЗВЕДЕНИЯ НА БЛАШКЕ И ИНТЕРПОЛАЦИОННИ РЕДИЦИ В ГОЛЕМИЯ КРЪГ

Димчо К. Станков

ZERO SETS OF HYPER-BLASCHKE PRODUCTS AND INTERPOLATING SEQUENCES IN THE BIG DISK

DIMCHO K. STANKOV

ABSTRACT: Let G be the compact group of all characters of the additive group of rational numbers. We study the zero sets of hyper-Blaschke products in the big-disk Δ_G .

KEYWORDS: bounded hyper-analytic functions, zero sets, interpolating Blaschke products

1. Introduction

Let Γ be a subgroup of the additive group of real numbers \mathbb{R} . We assume that Γ is equipped with the discrete topology. Denote by G the dual group of Γ , that is, G is the group of all continuous characters of Γ . Note that G is a compact abelian group with unit. By the Pontryagin duality theorem, the dual group \hat{G} of G is isomorphic to Γ and each character on G is of the type χ_p , $p \in \Gamma$, where $\chi_p(g) = g(p)$, $g \in G$. The open unit big-disk Δ_G over G we call the set $\Delta_G = [0,1] \times G/\{0\} \times G$. The points of Δ_G are denoted by r.g, $0 \le r < 1$ with the understanding that all points of type 0.g are identified into a single point, $\{*\}$, the origin (or the center) of big-disk Δ_G . For any $p \in \Gamma_+ = \Gamma \cap [0,\infty)$ the character χ_p on G is extendable up to the closed big disk $\overline{\Delta}_G = [0,1] \times G/\{0\} \times G$ in the following way: $\tilde{\chi}_p(r.g) = r^p \cdot \chi(g)$ for $p \ne 0$ and $r \ne 0$, $\tilde{\chi}_p(*) = 0$ for any $p \ne 0$ and $\tilde{\chi}_0 \equiv 1$ on $\overline{\Delta}_G$. Each function $\tilde{\chi}_p$; $p \in \Gamma_+ \setminus \{0\}$, projects the closed big-disk $\overline{\Delta}_G$ onto the closed unit disk $\overline{\Delta}$ and the open big disk Δ_G onto the open unit disk Δ in the complex plane.

The uniform closure A_G of finite linear combinations of functions $\tilde{\chi}_p$, with complex coefficients, i.e. of generalized polynomials, is the big-disk algebra on $\overline{\Delta}_G$. A_G is a uniform algebra on $\overline{\Delta}_G$ and its elements are called generalized-analytic functions in the sense of R. Arens and A. Singer. The maximal ideal space (spectrum) $M(A_G)$ of the big-disk algebra is the closed unit big-disk $\overline{\Delta}_G$ ([1]).

Note that if Γ is the additive group of integers \mathbb{Z} , then its dual, $\widehat{\Gamma} = \widehat{\mathbb{Z}}$, is the unit circle $T = \partial \Delta$ in the complex plane, the open big-disk $\Delta_G = \Delta_T$ is the open unit disk Δ in the complex plane, and the corresponding big-disk algebra, $A_T = A(\overline{\Delta})$, the classical disk algebra. In this paper we consider the case $\Gamma = \mathbb{Q}$ - the additive group of rational numbers and $G = \widehat{\mathbb{Q}}$.

Let Γ be the group of rational numbers \mathbb{Q} and $G = \widehat{\mathbb{Q}}$. A function f on the open unit big-disk is said to be hyper-analytic on Δ_G if f can be approximated uniformly on Δ_G by functions of type $h \circ \widetilde{\chi}_{1/n}$, where $n \in \mathbb{Z}_+ = \mathbb{Z} \cap (0, \infty)$ and h is analytic on the open unit disk Δ .

The algebra of all bounded hyper-analytic functions on Δ_G is denoted by H_G^{∞} . This algebra were introduced by T. Tonev ([2],[3]). Under the sup-norm on Δ_G , H_G^{∞} is a commutative Banach algebra with unit. As customary, we identify the functions $f \in H_G^{\infty}$ with their Gelfand transforms $\hat{f} \in \widehat{H_G^{\infty}}$ defined by $\hat{f}(\varphi) = \varphi(f)$, where φ runs in the spectrum $M(H_G^{\infty})$.

In [4] S. Grigorian and T. Tonev study Blaschke inductive limit algebras A(b), defined as inductive limits of disk algebras A(T) linked by a sequence $b = \{B_k\}_1^\infty$ of finite Blaschke products. It is shown that a big - disk algebra A_G over a group G with ordered dual $\Gamma = \hat{G} \subset \mathbb{R}$ is a Blaschke inductive limit algebra if and only if $\Gamma = \hat{G} \subset \mathbb{Q}$. They consider also inductive limits $H^\infty(I)$ of classical algebras H^∞ of bounded analytic functions on the open unit disk Δ , linked by a sequence $I = \{I_k\}_1^\infty$ of inner functions, and prove a version of the corona theorem with estimates for it. The algebra $H^\infty(I)$ generalizes the algebra H^∞_G of bounded hyper-analytic functions on an open big – disk.

The pseudohyperbolic distance between two points φ and ψ in the spectrum $M(H^{\infty})$ is defined by $\rho_{H^{\infty}}(\varphi,\psi) = \sup\{|h(\varphi)|: h \in \operatorname{ball}(H^{\infty}), h(\psi) = 0\}$, where $\operatorname{ball}(H^{\infty})$ stands for the closed unit ball of H^{∞} . By Schwarz-Pick's lemma $\rho_{H^{\infty}}(z,w) = |z-w|/|1-\overline{z}w|$ for z and w in $\Delta([5])$. As in H^{∞} the H^{∞}_{G} - pseudohyperbolic distance in $M(H^{\infty}_{G})$ is given by

$$\rho_{H^{\infty}_{G}}(\varphi, \psi) = \sup\left\{ \left| h(\varphi) \right| : h \in \operatorname{ball}(H^{\infty}_{G}), h(\psi) = 0 \right\},\$$

where φ and ψ belong to $M(H_G^{\infty})$. The link between H_G^{∞} - pseudohyperbolic distance in Δ_G and H^{∞} - pseudohyperbolic distance in Δ is as follows:

$$\rho_{H_{G}^{\infty}}(r_{1}.g_{1},r_{2}.g_{2}) = \sup_{m \in \mathbb{Z}_{+}} \rho_{H^{\infty}}(\tilde{\chi}_{1/m}(r_{1}.g_{1}),\tilde{\chi}_{1/m}(r_{2}.g_{2})).$$

This equality and other relationships between Gleason parts in $M(H_G^{\infty})$ and $M(H^{\infty})$ are proven in ([6]).

A sequence $\{\varphi_n\}_1^{\infty}$ in $M(H^{\infty})$ is called interpolating if for every bounded sequence $\{a_n\}_1^{\infty}$ of complex numbers there is a function $f \in H^{\infty}$ such that $f(\varphi_n) = a_n$ for all n. A sequence $\{\varphi_n\}_n$ in $M(H^{\infty})$ is said to be discrete if there exists a sequence of open sets $\{U_n\}_1^{\infty}$

with $\varphi_n \in U_n$ for every *n*, whose closures are pairwise disjoint. Every interpolating sequence is discrete.

An interpolating sequence $\{z_n\}_{1}^{\infty}$ in Δ is characterized by Carleson [5] as follows

$$\inf_{j}\prod_{n:n\neq j}\rho_{H^{\infty}}(z_{j},z_{n})>0.$$

For a sequence $\{z_n\}_1^{\infty}$ in Δ with $\sum_n (1-|z_n|) < \infty$, the function

$$B(z) = \prod_{n} \frac{-\overline{z}_{n}}{|z_{n}|} \frac{z - z_{n}}{1 - \overline{z}_{n} z}, \ z \in \Delta,$$

is called a Blaschke product with zeros $\{z_n\}_1^{\infty}$. If $\{z_n\}_1^{\infty}$ is an interpolating sequence, then B(z) is also called interpolating. Each Blaschke product *B* is an inner function, i.e. $|B(e^{i\theta})| = 1$ almost everywhere on *T*.

In this paper we study the zero sets of interpolation hyper – Blaschke products, i.e. the functions of the type $b_m = b \circ \tilde{\chi}_{1/m}$, where b is a Blaschke product on Δ and $m \in \mathbb{Z}_+$. Also we prove certain properties to a class of interpolating sequences in Δ_G .

2. Zero sets of hyper-Blaschke product and interpolating sequences in Δ_G

Given an $m \in \mathbb{Z}_+$ the set $H_{1/m}^{\infty} = \{h \circ \tilde{\chi}_{1/m} : h \in H^{\infty}\}$ is a subalgebra of H_G^{∞} . It is easy to see that $H_{1/n}^{\infty} \subset H_{1/m}^{\infty}$ whenever m = kn for some $k \in \mathbb{Z}_+$. The map $h \to h \circ \tilde{\chi}_{1/m}$ is an isometric algebra isomorphism between H^{∞} and $H_{1/m}^{\infty}$. By definition the set $\bigcup H_{1/m}^{\infty}$ is dense in H_G^{∞} , i.e.

the closure $\overline{\left\{H_{1/m}^{\infty}\right\}_{1}^{\infty}}$ coincides with H_{G}^{∞} .

For an arbitrary function $f \in H^{\infty}$ and $m \in \mathbb{Z}_+$ we denote the zero set of f in Δ with N(f) and with $N(f_m)$ - the zero set of $f_m = f \circ \tilde{\chi}_{1/m} \in H^{\infty}_{1/m}$ in Δ_G i.e. $N(f_m) = \{\tilde{\chi}_{1/m}^{-1}(N(f))\}$.

Let *b* be a Blaschke product on the open unit disk Δ and $m \in \mathbb{Z}_+$. The function of the type $b_m = b \circ \tilde{\chi}_{1/m}$ we call hyper – Blaschke product on the open big disk Δ_G . The hyper – Blaschke product b_m is an inner function in $H^{\infty}_{1/m} \subset H^{\infty}_G$ with zero set $N(b_m) = \{\tilde{\chi}^{-1}_{1/m}(\omega_n)\}_{n=1}^{\infty} \subset \Delta_G$, where $\{\omega_n\}_1^{\infty} \subset \Delta$ are all zeros of *b*. If *b* is interpolating, then b_m also called interpolating hyper – Blaschke product. Since for $t \in \mathbb{Z}_+$ we have

$$\tilde{\chi}_{1/tm}(r^t.g^t) = (r^t)^{1/tm}.g^t(1/tm) = r^{1/m}.g(1/m) = \tilde{\chi}_{1/m}(r.g),$$

then $N(b_{tm}) = \{r^t.g^t : r.g \in N(b_m)\}$.

For each real number *s*, the character e_s is defined by $e_s(p) = e^{isp}$ for $p \in \mathbb{Q}$. The induced mapping $s \to e_s$ is an isomorphism of the real line \mathbb{R} into a dense subgroup of *G* ([1]). If $r.g \neq *$ is in Δ_G , this isomorphism can be extended to the upper half-plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ as follows: $J_g(s+it) = e^{-t}.ge_s$. The image $J_g(\mathbb{C}_+)$ contains the point r.g and is dense in Δ_G . This image J_g is called standard embedding.

Example. Let α be a point in $\Delta \setminus \{0\}$, $f(z) = z - \alpha$ and $f_m = f \circ \tilde{\chi}_{1/m} = \tilde{\chi}_{1/m} - \alpha$, $m \in \mathbb{Z}_+$. To study the structure of zero set $N(f_m)$ we can use standard embedding J_g of the upper half-plane \mathbb{C}_+ in the open big disk Δ_G . If $\alpha = |\alpha| \cdot e^{i\varphi}$, where φ is an arbitrary argument of α , then the equation $\tilde{\chi}_{1/m}(r \cdot e_s) - \alpha = 0 \Leftrightarrow r^{1/m} \cdot e^{is/m} = |\alpha| \cdot e^{i\varphi}$ has on $J_{e_0}(\mathbb{C}_+)$ countable many solutions:

$$Z_{e_0}^{1/m} = \left\{ \left| \boldsymbol{\alpha} \right|^m \cdot \boldsymbol{e}_{s_k} \right\}_{k \in \mathbb{Z}} \subset \left| \boldsymbol{\alpha} \right|^m \times \boldsymbol{G} ,$$

 $s_k = (\varphi + 2k\pi)m$. Let $g_0 \in G$ and $g_0 \neq e_s$ for every $s \in \mathbb{R}$. Then the zero set of f_m in the "upper half-plane" $J_{g_0}(\mathbb{C}_+) = g_0 J_{e_0}(\mathbb{C}_+)$ in Δ_G is the set $Z_{g_0}^{1/m} = \left\{ |\alpha|^m . g_0 e_{s_k - \theta m} \right\}_{k \in \mathbb{Z}} \subset |\alpha|^m \times G$, where θ is a fixed value of the argument of $g_0(1/m)$. Since the multiplication with $g_0 e_{-\theta m}$ is a homeomorphism of G on G, then $Z_{e_0}^{1/m}$ and $Z_{g_0}^{1/m}$ are homeomorphic. Hence every two zero sets $Z_{g_1}^{1/m} \subset J_{g_1}(\mathbb{C}_+)$ and $Z_{g_2}^{1/m} \subset J_{g_2}(\mathbb{C}_+)$ of f_m are homeomorphic. So for zero set of f_m we obtain $N(f_m) = \bigcup_{g \in G} Z_g^{1/m}$.

Let $|\alpha|^m \cdot g_0 e_{s_k - \theta m}$ be an arbitrary point of $N(f_m)$ and we denote by $W_{\varepsilon} = U_{\varepsilon} \times V_{\varepsilon}$, where

$$U_{\varepsilon} = \left\{ r : \left| r - \left| \alpha \right|^{m} \right| < \varepsilon \right\} \text{ and } V_{\varepsilon} = \left\{ g \in G : \left| g \left(p_{j} \right) - \left(g_{0} e_{s_{k} - \theta m} \right) \left(p_{j} \right) \right| < \varepsilon, p_{j} \in \mathbb{Q}_{+}, j = 1, 2, ..., n \right\},$$

it's a basic neighborhood.

If $p_j = \alpha_j / \beta_j$ and $t = \beta_1 \cdot \beta_2 \cdot \cdot \cdot \beta_n$, then $\left[g_0(1/mt)\right]^t = g_0(1/m) = e^{i\theta}$ and there exists $l \in \mathbb{Z}_+$ such that $g_0(1/mt) = e^{i\theta/t} \cdot e^{i2\pi l/t}$. For $r_j = p_j \cdot tm = \alpha_j \cdot \beta_1 \cdot \cdot \cdot \beta_{j-1} \cdot \beta_{j+1} \cdot \cdot \cdot \beta_n \cdot m$ we have:

$$g_0(p_j) = g_0(\alpha_j / \beta_j) = \left[g_0(1/mt)\right]^{\alpha_j, \beta_1 \dots \beta_{j-1}, \beta_{j+1} \dots \beta_n, m} = \left[e^{i\theta/t}\right]^{r_j} \cdot \left[e^{i2\pi l/t}\right]^{r_j} = e^{i\theta p_j \cdot m} \cdot e^{i2\pi l p_j \cdot m}$$

and

$$\left(g_0 \cdot e_{s_k - \theta m}\right) \left(p_j\right) = g_0\left(p_j\right) \cdot e^{is_k p_j} \cdot e^{-i\theta m p_j} = e^{i\theta p_j m} \cdot e^{i2\pi l p_j \cdot m} e^{is_k p_j} \cdot e^{-i\theta m p_j} = e^{is_k p_j} \cdot e^{i2\pi l p_j \cdot m} = e_{s_k + 2\pi l m}\left(p_j\right),$$

j = 1, 2, ..., n, i.e. $|\alpha|^m .e_{s_k+2\pi lm} = |\alpha|^m .e_{s_{k+l}} \in W_{\varepsilon} \cap Z_{e_0}^{1/m}$. Therefore, $Z_{e_0}^{1/m}$ is dense in $N(f_m)$. **Theorem 2.1.** Let $b_m = b \circ \tilde{\chi}_{1/m}$ for $m \in \mathbb{Z}_+$ be a hyper – Blaschke product on the open big disk Δ_G . Then for every $t \in \mathbb{Z}_+$ there exist Blaschke products $b^{(1)}, b^{(2)}, ..., b^{(t)}$ on the open unit disk Δ such that:

(1) For every $j = 1 \div t$ is fulfilled $\omega(N(b^{(j)})) = N(b)$, where $\omega(z) = z^t$. The functions $b \circ \omega$ and $B = b^{(1)}b^{(2)}...b^{(t)}$ have the same zeros in Δ which is a single.

(2)
$$N(b_{tm}^{(j)}) \cap N(b_{tm}^{(i)}) = \emptyset$$
 for $j \neq i$ and $N(B_{tm}) = \bigcup_{j=1}^{i} N(b_{tm}^{(j)}) = N(b_m)$.

(3)
$$b_m$$
 has the form $b_m = b_{tm}^{(1)} . b_{tm}^{(2)} ... b_{tm}^{(t)}$ in Δ_G .

Proof: Let *b* be a Blaschke product with zeros $\{\omega_n\}_1^\infty$ in unit disk Δ , $\omega_n \neq \omega_k$ for $n \neq k$, $N(b_m) = \{\tilde{\chi}_{1/m}^{-1}(\omega_n)\}_{n=1}^\infty \subset \Delta_G$ and $t \in \mathbb{Z}_+$. Since for $r.g \in \Delta_G$ and $z = \tilde{\chi}_{1/tm}(r.g) \in \Delta$ we have $z^t = [\tilde{\chi}_{1/tm}(r.g)]^t = \tilde{\chi}_{1/m}(r.g)$, then $\tilde{\chi}_{1/tm}(N(b_m))$ is the set of all points z in Δ , such that $z^t = \omega_n$ for some n. For fixed n these points are a finite number and we obtain that the $\tilde{\chi}_{1/tm}(N(b_m))$ is a countable set.

If $\{z_s\}_1^{\infty} = \tilde{\chi}_{1/tm}(N(b_m))$ we can consider, that $z_1, z_2, ..., z_t$ are reflected with $\omega(z) = z^t$ on ω_1 ; $z_{t+1}, z_{t+2}, ..., z_{t+t}$ - on ω_2 etc., i.e. $(z_{nt+j})^t = \omega_{n+1}$ for n = 0, 1, 2, ... and j = 1, 2, ..., t. It is also clear that this sequence is composed of different points. Consider the following finite parts of the sequence $\{z_s\}_1^{\infty}$:

$$a_{11} = z_1, a_{21} = z_{t+1}, \dots, a_{n1} = z_{(n-1)t+1}, \dots$$

$$a_{12} = z_2, a_{22} = z_{t+2}, \dots, a_{n2} = z_{(n-1)t+2}, \dots$$

$$\dots \dots \dots \dots \dots \dots \dots \dots \dots$$

$$a_{1t} = z_t, a_{2t} = z_{t+t}, \dots, a_{nt} = z_{(n-1)t+t}, \dots$$

Since $\sum_{n=1}^{\infty} (1-|\omega_n|) < \infty$ and $|\omega_n| = |(a_{nj})^t| < |a_{nj}|$, then $\sum_{n=1}^{\infty} (1-|a_{nj}|) < \infty$ for every j = 1, 2, ..., t. We denote by $b^{(1)}, b^{(2)}, ..., b^{(t)}$ the Blaschke products with zero sets, respectively $\{a_{n1}\}_{1}^{\infty}, \{a_{n2}\}_{1}^{\infty}, ..., \{a_{nt}\}_{1}^{\infty}$.

(1) Obviously $\omega(N(b^{(j)})) = N(b)$, where $\omega(z) = z^t$. Since each of the sequences $\{z_s\}_1^{\infty}$, $\{a_{nj}\}_{n=1}^{\infty}$, j = 1, 2, ..., t, and $\{\omega_n\}_1^{\infty}$ are composed of different points, then the functions $b \circ \omega$ and $B = b^{(1)}b^{(2)}...b^{(t)}$ have the same zeros in Δ , which are single. Of course *B* it is also a Blaschke product with zeros $\{z_s\}_1^{\infty}$.

(2) If $j \neq i$, then $N(b_{tm}^{(j)}) \cap N(b_{tm}^{(i)}) = \{\tilde{\chi}_{1/tm}^{-1}(a_{nj})\}_{n=1}^{\infty} \cap \{\tilde{\chi}_{1/tm}^{-1}(a_{ni})\}_{n=1}^{\infty} = \emptyset$, because then $\{a_{nj}\}_{n=1}^{\infty} \cap \{a_{ni}\}_{n=1}^{\infty} = \emptyset$. The quality $N(B_{tm}) = \bigcup_{j=1}^{t} N(b_{tm}^{(j)}) = N(b_m)$ followed by the presentation $B = b^{(1)}b^{(2)}...b^{(t)}$ and $\{z_s\}_{1}^{\infty} = \{a_{nj}\}_{n=1,j=1}^{\infty,t} = \chi_{1/tm}(N(b_m)).$

(3) By (1) the functions $b \circ \omega = b^{(1)}b^{(2)}\dots b^{(t)}$ have the same zeros $\{z_s\}_1^{\infty}$ in Δ , which is a single. Then the functions $(b \circ \omega)/B = B/(b \circ \omega)$ are analytical in Δ and their modules does not exceed unit. By the maximum principle for holomorphic functions we have that $(b \circ \omega)/B = 1$ in Δ . Therefore, $(b \circ \omega)(z) = B(z)$ for every $z \in \Delta$ and we obtain:

$$b_{m}(r.g) = (b \circ \tilde{\chi}_{1/m})(r.g) = (b \circ \omega) \circ \tilde{\chi}_{1/tm}(r.g) = b_{tm}^{(1)}(r.g) \cdot b_{tm}^{(2)}(r.g) \dots b_{tm}^{(t)}(r.g)$$

for every $r.g \in \Delta_G$.

Note that if *b* is an interpolating Blaschke product on Δ , then $b^{(1)}, b^{(2)}, ..., b^{(t)}$ are interpolating also. Indeed, then for each j = 1, 2, ..., t the sequence $\{a_{nj}\}_{n=1}^{\infty}$ is interpolating, because $\{\omega_n\}_{1}^{\infty}$ is an interpolating sequence and $\omega(a_{nj}) = \omega_n$ for every *n*.

A sequence $\{r_k.g_k\}_1^{\infty} \subset \Delta_G$ is called interpolating for $H_{1/n}^{\infty} \subset H_G^{\infty}$, if for every sequence of complex numbers $\{a_k\}_1^{\infty} \subset l^{\infty}$ there is a function $h \in H^{\infty}$ such that $(h \circ \tilde{\chi}_{1/n})(r_k.g_k) = a_k$ for all k. It is clear that the sequence $\{r_k.g_k\}_1^{\infty}$ is interpolating for $H_{1/n}^{\infty}$, if and only if the sequence $\{\tilde{\chi}_{1/n}(r_k.g_k)\}_1^{\infty} \subset \Delta$ is interpolating for H^{∞} . It is characterized by Carleson with the inequality

$$\inf_{j}\prod_{k:k\neq j}\rho_{H^{\infty}}\left(\tilde{\chi}_{1/n}\left(r_{k}\cdot g_{k}\right),\tilde{\chi}_{1/n}\left(r_{j}\cdot g_{j}\right)\right)\geq\delta>0.$$

Also, if a sequence is interpolating for $H_{1/n}^{\infty}$, she is interpolating and for $H_{1/mn}^{\infty} \supset H_{1/n}^{\infty}$, i.e.

$$\inf_{j}\prod_{k:k\neq j}\rho_{H^{\infty}}\left(\tilde{\chi}_{1/mn}\left(r_{k}.g_{k}\right),\tilde{\chi}_{1/mn}\left(r_{j}.g_{j}\right)\right)\geq\delta>0,$$

for every $m \in \mathbb{Z}_+$.

Let $\{r_k \cdot g_k\}_1^\infty$ be an interpolating sequence for $H_{1/m}^\infty$, $\omega_k = \tilde{\chi}_{1/m}(r_k \cdot g_k)$ for $k \in \mathbb{N}$ and b be an interpolating Blaschke product with zeros $\{\omega_k\}_1^\infty$. Then the zero set of interpolating hyper – Blaschke product $b_m = b \circ \tilde{\chi}_{1/m}$ has the form $N(b_m) = \bigcup_{k=1}^\infty N_k(b_m)$, where $N_k(b_m)$ is the zero set of $\tilde{\chi}_{1/m} - \omega_k$ (see example). The sequence $\{r_k \cdot g_k\}_1^\infty$ is a small part of this set. Not every sequence of points in $N(b_m)$ is interpolating. But every sequence $\{r_k \cdot g_k\}_1^\infty \subset N(b_m)$, such that $r_k \neq r_j$ for $k \neq j$ is interpolating for $H_{1/m}^{\infty}$. Indeed, then $\{\tilde{\chi}_{1/m}(r_k.g_k)\}_1^{\infty}$ is a subsequence of a sequence $\{\omega_k\}_1^{\infty}$ and therefore is interpolating for H^{∞} .

Proposition 2.2. Let $\{r_k, g_k\}_{1}^{\infty}$ be an interpolating sequence for $H_{1/n}^{\infty}$. Then:

(1) $\{r_k.g_k\}_1^{\infty}$ is a separated sequence, i.e. there exists $\alpha > 0$ such that $\rho_{H_{\alpha}^{\infty}}(r_k.g_k,r_j.g_j) \ge \alpha$ for $j \ne k$.

- (2) $\{r_k.g_k\}_1^{\infty}$ is a discrete.
- (3) $\{r_k \cdot g_k\}_1^{\infty}$ satisfies the Carleson condition in Δ_G , i.e.

$$\inf_{j}\prod_{k:k\neq j}\rho_{H_{G}^{\infty}}(r_{k}.g_{k},r_{j}.g_{j})\geq\delta>0.$$

(4) Every sequence $\{z_k\}_1^{\infty} \subset \mathbb{C}_+$ such that $(\tilde{\chi}_{1/n} \circ J_{g_0})(z_k) = \tilde{\chi}_{1/n}(r_k \cdot g_k)$ for some $g_0 \in G$ and for every k, is interpolating for $H^{\infty}(\mathbb{C}_+)$.

Proof: (1) Since the sequence $\{\tilde{\chi}_{1/n}(r_k \cdot g_k)\}_1^{\infty} \subset \Delta$ is interpolating for H^{∞} , then there exists $\alpha > 0$ such that

$$\rho_{H_{G}^{\infty}}\left(r_{k}\cdot g_{k}, r_{j}\cdot g_{j}\right) = \sup_{m\in\mathbb{Z}_{+}}\rho_{H^{\infty}}\left(\tilde{\chi}_{1/m}\left(r_{k}\cdot g_{k}\right), \tilde{\chi}_{1/m}\left(r_{j}\cdot g_{j}\right)\right) \geq \rho_{H^{\infty}}\left(\tilde{\chi}_{1/n}\left(r_{k}\cdot g_{k}\right), \tilde{\chi}_{1/n}\left(r_{j}\cdot g_{j}\right)\right) \geq \alpha.$$

(2) $\{r_k \cdot g_k\}_1^{\infty}$ is discrete, because $\{\tilde{\chi}_{1/n}(r_k \cdot g_k)\}_1^{\infty} \subset \Delta$ is a discrete sequence and $\tilde{\chi}_{1/n}$ is continuous in Δ_G .

(3) Followed by the inequality

$$\rho_{H_{G}^{\infty}}(r_{k}.g_{k},r_{j}.g_{j}) \geq \rho_{H^{\infty}}(\tilde{\chi}_{1/n}(r_{k}.g_{k}),\tilde{\chi}_{1/n}(r_{j}.g_{j}))$$

and that the sequence $\{\tilde{\chi}_{1/n}(r_k.g_k)\}_1^{\infty} \subset \Delta$ is interpolating for H^{∞} .

(4) If $z = x + iy \in \mathbb{C}_+$, then the function:

$$\left(\tilde{\chi}_{1/n} \circ J_{g_{o}}\right)(z) = \tilde{\chi}_{1/n}\left(e^{-y} \cdot g_{0}e_{x}\right) = e^{-y/n} \cdot g_{0}\left(1/n\right) \cdot e^{ix/n} = e^{iz/n} \cdot g_{0}\left(1/n\right)$$

is analytic in \mathbb{C}_{+} and $(\tilde{\chi}_{1/n} \circ J_{g_o})(\mathbb{C}_{+}) \subset \Delta$. Since $\{\tilde{\chi}_{1/n}(r_k.g_k)\}_1^{\infty} \subset \Delta$ is interpolating for H^{∞} and $(\tilde{\chi}_{1/n} \circ J_{g_0})(z_k) = \tilde{\chi}_{1/n}(r_k.g_k)$, then $\{z_k\}_1^{\infty}$ is an interpolating sequence for $H^{\infty}(\mathbb{C}_{+})$.

Acknowledgements

The author would like to thank for support of Shumen University through Scientific Research Grant **RD-08-237/2014**.

REFERENCES

1. T. Gamelin, Uniform Algebras, Prentice-hall Inc., Englewood Gliffs, N. J. (1969).

2. **T. Tonev**, The algebra of bounded hyper-analytic functions has no corona, Analytic functions, Lect. Notes in Math., Springer Verlag, 798 (1980), 435-438.

3. T. Tonev, Big-Planes, Boundaries and Function Algebras, Elsevier, North Holland-Amsterdam, 1992.

4. S. Grigoryan, T. Tonev, Shift-invariant algebras on groups. Contemporary Math., 2004, v. 363.

5. J. Garnett, Bounded analytic functions, 2nd ed., Springer, Graduate Texts in Mathematics 236, New York, 2007.

6. **D. Stankov**, Pseudo-hyperbolic distance and Gleason parts of the algebra of bounded hyper-analytic functions on the big disk, Rocky Montain Journal of Mathematics (to appear).