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ABSTRACT: In this paper we consider a unit-speed C3-plane curve and its generalized focal
curve. Relations between the Euclidean curvatures, shape curvatures and focal curvatures of the corre-
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a circle and a catenary.
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1 Introduction
The differential-geometric invariants of curves with respect to the group of orientation pre-

serving Euclidean motions or the group of direct similarities have an essential role of recovering
the curves up to transformation from the considered groups. The Euclidean differential geometry
of curves is completely presented in [7]. The fundamental theorem in the classical curve theory is
extended to the orientation preserving similarity group in [3]. Based on the above mentioned the-
orems, recovering a space curve by a pair of real functions up to an orientation-preserving motion
or a similarity transformation is possible (see [7], [2]). We will refer to these invariants as curve
determining invariants.

The focal curves and the focal curvatures of smooth curve are explored by Uribe-Vargas
in [9]. Relations between Euclidean curvatures and focal curvatures as well as between focal
curvatures and so called shape curvatures, that determine the curve up to a orientation preserving
similarity, are obtained in [9] and [3], respectively.

There are various methods for constructing new plane or space curves using existing well-
known plane curves. An algorithm for creating a new plane curve is given in [6] and it is divided
into three steps. First, we obtain a cylindrical helix from a given unit speed plane curve. Second,
we determine the focal curve of the obtained cylindrical helix. Third, we find the orthogonal
projection of the focal curve in the plane of the first curve. This curve we will call a generalized
focal curve. In this paper we consider examples of two well-known plane curves as involute of
circle and catenary. In addition, we examine nontrivial self-similar plane curves. We obtain their
generalized focal curves and find the relations between the determining invariants of the considered
classes of pair-curves. As a result, one may create new curves via these relations without using the
aforementioned method. Some properties of the obtained curves are explored.

2 Preliminaries
Let γγγ : [a,b]→ E3 be a regular C3-space curve in the three dimensional Euclidean space E3

with nonzero curvature κ1 and torsion κ2. The focal curve of γγγ is the curve given by the equation

(1) Cγ(t) = γγγ(t)+ c1(t)n1(t)+ c2(t)n2(t),
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where n1 is a principal unit normal vector field of γγγ , n2 is a binormal unit vector field of γγγ. The
coefficients c1(t) and c2(t) are smooth functions called focal curvatures of γγγ , given by

c1(t) =
1

κ1(t)
, c2(t) =−

d
dt κ1(t)

∥ dγγγ(t)
dt ∥ κ1(t)2κ2(t)

=
dc1(t)

dt

∥ dγγγ(t)
dt ∥ κ2(t)

,

where κ1(t) and κ2(t) are the curvature and the torsion of γγγ (see [7], p. 241). We denote by ∥.∥ the
length of the vector-functions or vectors.

We define a new space curve γγγ = γγγ(s), s ∈ I ⊆ R in the Euclidean space E3 with parametric
representation

(2) γγγ(s) = (x(s), y(s), as+b) = ααα(s)+(as+b)⃗e3, a,b = const

with respect to a given right-handed Cartesian coordinate system Oe⃗1e⃗2e⃗3 in E3. This curve lies
on the generalized cylinder Sααα with a base plane curve ααα(s) = (x(s),y(s)) ⊂ E2 ≡ Oe⃗1e⃗2 and
rulings parallel to z-axis. Observe that the condition κ2/κ1 = const, characterizing cylindrical
helixes, holds for the curve γγγ. More precisely, γγγ is a cylindrical helix with constant curvatures’
ratio κ2/κ1 = εa, where ε is the sign of the sighed curvature K of ααα(s) (see [5], p. 5640). In
what follows we will call γγγ a cylindrical helix generated by the plane curve ααα . Moreover, this
cylindrical helix is a geodesic curve on Sααα that has to have constant speed

√
1+a2 and constant

slope a with respect to the unit vector e⃗3 (see [8]).
From [6] we have that the focal curve Cγ of γγγ possesses a parametrization

(3) Cγ(s) = ααα(s)+
(1+a2)K ′

K3 T+
1+a2

K
N+

(as+b)aK3 − (1+a2)K ′

aK3 e⃗3,

where T and N form the Frenet frame of ααα and the derivative about an arc-length parameter is
denoted by ” ′ ”. We will call the curve Cγ an associated space curve of unit-speed plane curve
ααα with nonzero signed curvature. The relations between the Euclidean curvatures K1, K2 and K of
the corresponding pair-curves Cγ and ααα, respectively, are given by the equalities

(4) K1 =
a2|K|

(1+a2)
∣∣∣a2 +(1+a2)

( K̃
K

)′∣∣∣ ,K2 =
aK

(1+a2)
(

a2 +(1+a2)
( K̃

K

)′) ,
where K̃ =

(
1
K

)′
is the shape curvature of ααα. Moreover, the relations between the shape cur-

vatures K̃1, K̃2 and K̃ of the corresponding pair-curves Cγ and ααα, respectively, are given by the
equalities

(5) K̃1 =

√
1+a2

a

∣∣∣∣∣K̃ +
(1+a2)

K

( K̃
K

)′′
a2 +(1+a2)

( K̃
K

)′
∣∣∣∣∣ and K̃2 =

δ

εa
,

where ε = sign(K), δ = sign
(

a2 +(1+a2)
(

K̃
K

)′)
and a is the constant slope of γγγ.
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3 A generalized focal curve of plane curve.
Definition 3.1. The orthogonal projection of the associated curve Cγ , defined by (3), on the plane
E2 ≡ Oe⃗1e⃗2 is called a generalized focal curve of the plane curve ααα.

We denote that curve by βββ . From the equation (3) we deduce that the generalized focal curve
of ααα is determined by

(6) βββ (s) = ααα(s)− (1+a2)K̃
K

ααα
′
+

1+a2

K
Jααα

′
,

where J is the complex structure of E2.

Theorem 3.1. Let ααα = ααα(s), s ∈ I be a unit-speed C3-plane curve in E2 with Euclidean and shape
curvatures Kα ̸= 0 and K̃α , respectively. Suppose that βββ = βββ (s) is the corresponding generalized
focal curve of ααα . Then the Euclidean and shape curvatures Kβ ̸= 0 and K̃β of βββ are given by

(7) Kβ =
Kα∣∣∣∣a2 +(1+a2)

(
K̃α

Kα

)′∣∣∣∣
, K̃β =

(
ln
∣∣∣∣a2 +(1+a2)

(
K̃α

Kα

)′∣∣∣∣)′

Rα + K̃α ,

where Rα =
1

Kα

is the radius of curvature of α and a is the constant slope of γγγ.

Proof. From (6) we find the derivative of βββ (s) about an arc-length parameter s and we obtain that

dβββ (s)
ds

=−
(

a2 +(1+a2)

(
K̃α

Kα

)′)
α

′
(s) ,

∥∥∥∥dβββ (s)
ds

∥∥∥∥=

∣∣∣∣a2 +(1+a2)

(
K̃α

Kα

)′∣∣∣∣.
From the Frenet-Seret equations about an arbitrary parameter we get that the unit tangent vector
βββ

′
(s) of βββ is

βββ
′
(s) =

dβββ (s)
ds

/

∥∥∥∥dβββ (s)
ds

∥∥∥∥=−δα
′
(s) , δ = sign

(
a2 +(1+a2)

(
K̃α

Kα

)′)
.

If βββ
′′

is the second derivative about the arc-length parameter of the curve βββ we have that

βββ
′′
(s) =

dβββ
′
(s)

ds
/

∥∥∥∥dβββ (s)
ds

∥∥∥∥=−δααα
′′
/

∥∥∥∥dβββ (s)
ds

∥∥∥∥= Kα(−δJααα
′
)/

∥∥∥∥dβββ (s)
ds

∥∥∥∥
and from −δJααα

′
= Jβββ

′
and the structure equations

βββ
′′ = Kβ .Jβββ

′, Jβββ
′′ =−Kβ .βββ

′

of βββ we obtain that Kβ =
Kα∥∥∥∥dβββ (s)
ds

∥∥∥∥ =
Kα∣∣∣∣a2 +(1+a2)

(
K̃α

Kα

)′∣∣∣∣
. Hence, we get

K̃β =
dK−1

β

ds
/

∥∥∥∥dβββ (s)
ds

∥∥∥∥=
d
ds

(∥∥∥∥dβββ (s)
ds

∥∥∥∥K−1
α

)
/

∥∥∥∥dβββ (s)
ds

∥∥∥∥=

(
ln
∥∥∥∥dβββ (s)

ds

∥∥∥∥)′

Rα + K̃α .
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Corollary 3.1.1. The relations between the Euclidean curvatures K1 and K2 of the associated with
ααα space curve Cγ and the signed curvature Kβ of the corresponding generalized focal curve βββ are

(8) K1 =
a2εKβ

1+a2 and K2 =
aδKβ

1+a2 .

Proof. The proof follows immediately from the first equation of (7) and (4).

Theorem 3.2. Suppose that ααα = ααα(s), s ∈ I is a unit-speed C3-plane curve with signed curvature
Kα ̸= 0 and γγγ[a,b](s) = ααα(s)+(as+b)⃗e3 be the corresponding geodesic curve on the generalized
cylinder Sα . Let βββ = βββ (s) be the generalized focal curve of ααα with signed curvature Kβ ̸= 0. For
the one-parameter family of curves γγγ[1,b] the following conditions are equivalent:

(i) ααα is one of the following curves: a circle, an involute of a circle, or a cycloid;

(ii) Kα = Kβ .

Proof. If ααα is a circle with radius r then Kα = 1/r and K̃α = 0. From a = 1 and the first equation
of (7) we obtain that Kα = Kβ . Now we consider the involutes of a circle with natural equation

R2
α = 2ps+2q, p,q = const, where Rα =

1
Kα

. After differentiation about an arc-length parameter

s we have 2RαR
′
α = 2p. Hence, K̃α/Kα = p and (K̃α/Kα)

′
= 0. Applying (7) we get Kα = Kβ .

Finally, let us consider the equation R2
α =−s2+2ms+2n, m,n = const that is the natural equation

of cycloids. Then 2RαR
′
α = −2s + 2m ⇔ RαR

′
α = −s + m ⇔ 1

Kα

( 1
Kα

)′

=
K̃α

Kα

= −s + m ⇔

(K̃α/Kα)
′
=−1 and from (7) it follows (ii).

Conversely, let a = 1 and Kα = Kβ ⇔
∣∣∣∣1+2

(
K̃α

Kα

)′∣∣∣∣ = 1 ⇔
(

K̃α

Kα

)′

= 0 or
(

K̃α

Kα

)′

= −1. The

curves satisfying the first differential equation have natural equation R2
α = 2ps+ 2q, p,q = const

and they are circles for p = 0,q > 0 or involutes of circles for p > 0. The curves that satisfy
the second differential equation are cycloids with natural equation R2

α = −s2 + 2ms+ 2n, m,n =
const.

4 Invariants of self-similar cylindrical curves over plane curves
A Frenet space curve γγγ : I →E3 is called a self-similar curve, if γγγ is an orbit under the action

of one-parameter group of direct similarities. Hence, a Frenet curve in E3 is self-similar if and
only if its shape invariants κ̃1, κ̃2 are constants. The unique self-similar curves in the Euclidean
plane are the straight lines, the circles and the logarithmic spirals. In addition, the conic helixes
complete the set of self-similar curves in the three-dimensional Euclidean space. Straight lines are
excluded from nontrivial self-similar curves.

Lemma 4.1. The geodesic curve γγγ on a generalized cylinder over a nontrivial self-similar unit-
speed C3-plane curve ααα is also a self-similar curve.

Proof. Let ααα be a nontrivial self-similar unit-speed C3-plane curve. Then the shape curvature K̃ of
ααα is a constant and from Corollary 2.2.1 in [6] we have that the shape curvatures κ̃1 =

√
1+a2|K̃|

and κ̃2 = εa are also constants. Hence, γγγ is a self-similar curve.
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Lemma 4.2. The relation between shape curvature of associated space curve Cγ and shape cur-
vature of nontrivial self-similar unit-speed C3-plane curve ααα is

K̃1 =

√
1+a2

a
|K̃|.

Proof. It follows immediately from (5) and K̃ = const.

Theorem 4.3. The associated space curve Cγ of a nontrivial self-similar unit-speed C3-plane
curve α is also a self-similar curve.

Proof. Let ααα be a self-similar curve. Then the shape curvature K̃ of ααα is a constant. From Lemma
4.2 and the second equation of (5) it follows that Cγ is also a self-similar curve.

Corollary 4.3.1. The relations between the shape curvatures κ̃1, κ̃2 of a self-similar cylindrical
curve γγγ and the shape curvatures K̃1, K̃2 of the associated space curve Cγ are given by

(9) K̃1 =
κ̃1

|κ̃2|
and K̃2 =

1
κ̃2

.

Proof. Since K̃ = const then
(K̃

K

)′

= K̃2 > 0 and δ = sign
(

a2 +(1+a2)
(

K̃
K

)′)
is positive. Then

applying the relations κ̃1 =
√

1+a2|K̃| and κ̃2 = εa from Corollary 2.2.1 in [6], Lemma 4.2 and

K̃2 =
δ

εa
we obtain (9).

5 Examples of geodesic cylindrical curves and their focal curves.
5.1 Involute of a circle

We consider the involute of a circle k(O,r) with unit-speed parametrization

(10) ααα(s) =
(

r cos

√
2s
r
+
√

2rs sin

√
2s
r
,r sin

√
2s
r
−
√

2rs cos

√
2s
r

)
.

Let γγγ be the corresponding geodesic with parametric equation

(11) γγγ[a,b](s) = ααα(s)+(as+b)⃗e3.

Using (3) we obtain that the focal curve Cγ associated with ααα has parametric equation

(12) Cγ(s) =−a2
ααα(s)+(as+d)⃗e3, where d =

r(1+a2)

a
+b = const.

The orthogonal projection of Cγ onto coordinate plane Oxy is the curve βββ (s) = −a2ααα(s). It has
constant speed and it is obvious that the focal curve Cγ is a geodesic over the generalized cylinder
Sβ (u,v) = βββ (u)+(av+d)⃗e3 with base plane curve βββ .

Let us introduce homogeneous coordinates (x,y,z, t) in E3 ≡ Oe⃗1e⃗2e⃗3 by X =
x
t
, Y =

y
t
, Z =

z
t
, t ̸=

0, where (X ,Y,Z) are Cartesian coordinates in E3 and Ω : t = 0 is the plane at infinity.
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Theorem 5.1. Let ααα be a C3-plane curve with parametrization (10) and γγγ[a,b] is the correspond-
ing geodesic with parametrization (11). Let the focal curve Cγ associated with ααα has parametric
equation (12). Then Φ : γγγ[a,b](s)→Cγ(s) is an affine transformation with double point at infinity

R(0,0,1,0) and line of double points at infinity u∞ :
{

z = 0
t = 0 in homogeneous coordinates. For

the one-parameter family of curves γγγ[1,b] the transformation Φ is a direct similarity.

Proof. The matrix representation of Φ in homogeneous coordinates is

(13) (λ ′x′,λ ′y′,λ ′z′,λ ′t ′) = (x,y,z, t).


−a2 0 0 0

0 −a2 0 0
0 0 1 0
0 0 r(1+a2)/a 1

 ,

where the matrix AΦ of Φ has nonzero determinant, i.e. detAΦ = a4 ̸= 0. It is clear that Φ is a linear
transformation. The double points of Φ are the nonzero solution of the homogeneous system

(14)

∣∣∣∣∣∣∣∣
(−λ −a2)x = 0

(−λ −a2)y = 0
(−λ +1)z+ (r(1+a2)/a)t = 0

(−λ +1)t = 0

.

The last system has nonzero solution if and only if its determinant satisfies the equality

(15)

∣∣∣∣∣∣∣∣
−λ −a2 0 0 0

0 −λ −a2 0 0
0 0 −λ +1 r(1+a2)/a
0 0 0 −λ +1

∣∣∣∣∣∣∣∣= (λ +a2)2(1−λ )2 = 0.

For λ = 1 we get that the double points of Φ satisfy the system

∣∣∣∣∣∣∣∣
(1+a2)x = 0
(1+a2)y = 0

(r(1+a2)/a)t = 0
0.z = 0

, i.e.

the point R(0,0,1,0) is a double point of Φ. Let δ be a plane with homogeneous coordinates

δ [A,B,C,D]. To find the double planes of Φ we solve the system

∣∣∣∣∣∣∣∣
(1+a2)A = 0
(1+a2)B = 0

(r(1+a2)/a)C = 0
0.D = 0

. There-

fore A = B = C = 0,D ̸= 0 and the plane at infinity Ω : t = 0 is a double plane to Φ, i. e. Φ is

an affine transformation. For λ =−a2 we get the system

∣∣∣∣∣∣∣∣
0.x = 0
0.y = 0

(1+a2).z+(r(1+a2)/a)t = 0
(1+a2).t = 0

, i.e.

all points of the line at infinity u∞ :
{

z = 0
t = 0 of Oxy plane are double points of Φ. In this case

the double planes satisfy the system

∣∣∣∣∣∣∣∣
0.A = 0
0.B = 0

(1+a2).D+(r(1+a2)/a).C = 0
(1+a2).C = 0

and they have equation
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δ : Ax+By = 0, A2 +B2 ̸= 0. Now let us find a condition when the affine transformation Φ is a
direct similarity. According to [1], if the shape curvatures of the corresponding curves are equal,
the curves are similar and have the same orientation. After some calculations and simplifications
we get that K = 1/

√
2rs and K̃ = r/

√
2rs, where K and K̃ are the signed curvature and the shape

curvature of the base plane curve ααα. Since K̃/K = r is a constant then (K̃/K)
′
= (K̃/K)

′′
= 0.

Applying the last equality in (5) we have that the shape curvatures of the associated focal curve

Cγ are K̃1 =

√
1+a2

a
|K̃| = r

√
1+a2

a
√

2rs
and K̃2 =

1
a

. From Corollary 2.2.1 in [6] the shape curva-

tures of the geodesic cylindrical curve γγγ are κ̃1 =
√

1+a2|K̃| = r
√

1+a2
√

2rs
and κ̃2 = εa. Since

ε = signK = +1 it is clear that K̃1 = κ̃1 and K̃2 = κ̃2 if and only if the constant slope a of γγγ is
equal to one.

Corollary 5.1.1. Let ααα be an involute of a circle, defined by equations (10), and βββ is the gener-
alized focal curve of ααα. The transformation φ : ααα(s)→ βββ (s) is a homothety with coefficient −a2

and the curve βββ (s) is an involute of a circle k̄(O, r̄), where r̄ = ra2. If Φ is a direct similarity then
φ is a central symmetry with center the origin.

Proof. From βββ (s) = −a2ααα(s) it is obvious that φ is a homothety with coefficient −a2 and the
curve βββ (s) is an involute of a circle k̄(O, r̄), where r̄ = ra2. Next, the proof follows immediately
from Theorem 5.1.

Π 2 Π

-10

-5

5

Fig. 1: An involute of circle in green, curve β in red, space curve γ in blue, its focal curve Cγ in purple

Another interesting maps between space curve γγγ and its corresponding focal curve Cγ are
explored in [4].

- 63 -



Dinkova, C., Encheva, R.

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-8

-6

-4

-2

2

Fig. 2: The catenary ααα in green, its generalized focal curve β in red, geodesic space curve γ in blue, associated
space curve Cγ in purple

5.2 Catenary
Now let us consider the catenary with unit-speed parametrization

ααα(s) =
(

c. ln
s+

√
c2 + s2

c
,
√

c2 + s2
)
,

where c = const > 0 and let γγγ(s) = ααα(s)+(as+b)⃗e3 be the corresponding geodesic curve. Using
(3) we obtain that the focal curve associated with ααα has parametric equations

Cγ(s) :


x(s) =

−3
(
1+a2)s

√
c2 + s2

c
+ c ln

s+
√

c2 + s2

c

y(s) =

√
c2 + s2

((
2+a2)c2 −2

(
1+a2)s2)

c2

z(s) = b+as+
2
(
1+a2)s

(
c2 + s2)

ac2 .

Therefore, the generalized focal curve βββ (s) of ααα(s) has parametric equation

βββ (s) =
(

c ln
s+

√
c2 + s2

c
−

3
(
1+a2)s

√
c2 + s2

c
,

√
c2 + s2

((
2+a2)c2 −2

(
1+a2)s2)

c2

)
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