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1 Introduction
A fundamental result in fixed point theory is the Banach Contraction Principle in Banach

spaces or in complete metric spaces. Fixed point theory is an important tool for solving equations
T x = x for mappings T defined on subsets of metric or normed spaces. It is widely applied to
nonlinear integral equations and differential equations.

The concept of coupled fixed point theorem is introduced in [3]. Later on Bhaskar and
Lakshmikantham [1] introduced the notions of a mixed monotone mapping, studied the problems
of uniqueness of a coupled fixed point in partially ordered metric spaces and applied their theorems
to problems of the existence of solution for a periodic boundary value problem. Harjani, López and
Sadarangani obtained in [5] some coupled fixed point theorems for a mixed monotone operator in
a complete metric space endowed with a partial order by using altering distance functions. They
applied their results to the study of the existence and uniqueness of a nonlinear integral equation.
Recent results about the application of coupled fixed point theorems for solving integral equations
are obtained in [9].

Other kind of a generalization of the Banach Contraction Principle is the notion of cyclic
maps [13]. Because a non-self mapping T : A→ B does not necessarily have a fixed point, one
often attempts to find an element x which is in some sense closest to T x. Best proximity point
theorems are relevant in this perspective. The notion of best proximity point is introduced in
[2]. This definition is more general than the notion of cyclic maps [13], in sense that if the sets
intersect then every best proximity point is a fixed point. A sufficient condition for the existence
and uniqueness of the best proximity points in uniformly convex Banach spaces is given in [2].

First results in the approximation of the sequence of successive iterations, which converges
to the best proximity point for cyclic contractions is obtained in [26] and for coupled best proximity
points in [6].

Besides the idea of defining a norm and considering a Banach space, another direction of
generalization of the Banach Contraction Principle is based on considering an abstractly given
functional defined on a linear space, which controls the growth of the members of the space. This
functional is usually called modular and it defines a modular space. The theory of modular spaces
was initiated by Nakano [21] in connection with the theory of ordered spaces, which was further
generalized by Musielak and Orlicz [20]. Modular function spaces are subclass of the modular
spaces. The study of the geometry of modular function spaces was initiated by Kozlowski [16,
14, 15]. Fixed point results in modular function spaces were obtained first by Khamsi, Kozlowski
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and Reich [11]. Further development of the theory of fixed points in modular function spaces can
be found in the exhaustive references of the survey article [17] and in the book [10]. Kozlowski
has contributed a lot towards the study of modular function spaces both on his own and with his
collaborators. First results about best proximity points in modular function spaces are obtained in
[7, 25].

A genarization of the idea of coupled fixed points and coupled best proximity points in
modular function spaces was done in [8]. We have tried to generalize the idea of coupled fixed
points and coupled best proximity points in modular function spaces for Kannan contraction maps.

2 Preliminaries
Following [17, 10] we will recall some basic notions and facts about modular function

spaces.
Let Ω be a nonempty set and Σ be a nontrivial σ–algebra of subsets of Ω. Let P be a δ–ring

of subsets of Ω, such that E ∩A ∈P for any E ∈P and A ∈ Σ. let us assume that there exists
an increasing sequence of sets Kn ∈P such that Ω = ∪Kn. By E we denote the linear space
of all simple functions with supports from P . By M∞ we will denote the space of all extended
measurable functions, i.e. all functions f : Ω→ [−∞,∞] such that there exists a sequence {gn}⊂ E ,
|gn| ≤ | f | and gn(ω)→ f (ω) for all ω ∈Ω. By 1A we denote the characteristic function of the set
A.

Definition 1. Let ρ : M∞ → [0,∞] be a nontrivial convex and even function. We say that ρ is a
regular convex function pseudomodular if:

(i) ρ(0) = 0;
(ii) ρ is monotone, i.e., | f (ω)| ≤ |g(ω)| for all ω ∈Ω implies ρ( f )≤ ρ(g), where f ,g ∈M∞;

(iii) ρ is orthogonaly subadditive, i.e., ρ( f 1A∪B) ≤ ρ( f 1A)+ρ( f 1B), where A,B ∈ Σ such that
A∩B 6= /0, f ∈M∞;

(iv) ρ has the Fatou property, i.e., | fn(ω)| ↑ | f (ω)| for all ω ∈ Ω implies ρ( fn) ↑ ρ( f ), where
f ∈M∞;

(v) ρ is order continuous in E , i.e., gn ∈ E and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.
Similarly as in the case of measure spaces, we say that a set A∈ Σ is ρ–null if ρ(g1A) = 0 for

every g ∈ E . We say that a property holds ρ–almost everywhere if the exceptional set is ρ–null.
As usual we identify any pair of measurable sets whose symmetric difference is ρ–null as well as
any pair of measurable functions differing only on a ρ–null set. With this in mind we define

M (Ω,σ ,P,ρ) = { f ∈M∞; | f (ω)|< ∞ρ − a.e.},

where each f ∈M (Ω,σ ,P,ρ) is actually an equivalence class of functions equal ρ a.e. rather
than an individual function. Where no confusion exists we will write M instead of M (Ω,σ ,P,ρ).

Definition 2. Let ρ be a regular convex function pseudomodular.

(1) We say that ρ(0) is a regular convex function semimodular if ρ(α f ) = 0 for every α > 0
implies f = 0 ρ–a.e.;

(2) We say that ρ is a regular convex function modular if ρ( f ) = 0 implies f = 0 ρ–a.e.
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The class of all nonzero regular convex function modular defined on Ω will be denoted by
R.

Let us denote ρ( f ,E) = ρ( f 1E) for f ∈M , E ∈ Σ. It is easy to prove that ρ( f ,E) is a
function pseudomodular in the sense of Definition 2.1.1 in [16] (more precisely, it is a function
pseudomodular with the Fatou property). Therefore, we can use all results of the standard theory
of modular function spaces as per the framework defined by Kozlowski [16, 14, 15], see also
Musielk [20] for the basics of the general modular theory.

Definition 3. Let ρ be a convex function modular.

(a) A modular function space is the vector space Lρ(Ω,Σ), or briefly Lρ , defined by

Lρ = { f ∈M : ρ(λ f )→ 0 as λ → 0} ;

(b) The following formula defines a norm in Lρ (frequently called Luxemburg norm):

‖ f‖ρ = inf
{

α > 0 : ρ

(
f
α

)
≤ 1
}
.

For the rest of the article if we state someting about a norm we will mean Luxemburg norm
‖ · ‖ρ , which is generated by the modular ρ .

In this way, Lebesgue, Orlicz, Musielak–Orlicz, Lorentz, Orlicz–Lorentz are examples of
modular function spaces.

In the following theorem, we recall some of the basic properties of modular function spaces.

Theorem 4. Let ρ ∈R.

(1) (Lρ ,‖ f‖ρ) is a complete and the norm ‖ · ‖ρ is a monotone w.r.t the natural order in M .

(2) ‖ fn‖ρ → 0 iff ρ(α fn)→ 0 for every α > 0.

(3) If ρ(α fn)→ 0 for an α , then there exists a subsequence {gn} of { fn} such that gn→ 0 ρ–a.e.

(4) If { fn} converges uniformly to f on a set E ∈P , then ρ(α( fn− f ),E)→ 0 for every α > 0.

(5) Let fn → f ρ–a.e. There exists a nondecreasing sequence of sets Hk ∈P such that Hk ↑ Ω

and fn converges uniformly to f on every Hk (Egoroff Theorem).

(6) ρ( f ) ≤ liminfρ( fn) whenever fn → f ρ–a.e. (Note that this property is equivalent to the
Fatou property).

(7) Define L0
ρ{ f ∈ Lρ : ρ( f , ·) is order continuous} and Eρ = { f ∈ Lρ : λ f ∈ L0

ρ for every λ > 0}
we have

(a) Lρ ⊃ L0
ρ ⊃ Eρ ;

(b) Eρ has the Lebesgue property, i.e. ρ(α f ,Dk)→ 0 for α > 0, f ∈ Eρ and Dk ↓ /0;

(c) Eρ is the closure of E (in the sense of ‖ · ‖ρ ).

The next definition gives generalizations of the classical notions for normed spaces in the
context of modular function spaces.
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Definition 5. Let Lρ ∈R.

(a) We say that { fn} is a ρ–convergent to f and we write fn→ f (ρ) if and only if ρ( fn− f )→ 0;

(b) A sequence { fn}∞
n=1 ⊂ Lρ is called ρ–Cauchy if for any ε > 0 there exists N ∈N, such that for

any m > n≥ N there holds the inequality ρ( fm− fn)< ε;

(c) The modular function space Lρ is called ρ–complete if any ρ–Cauchy sequence is ρ–convergent.

(d) A set B ⊂ Lρ is called ρ–closed if for any sequence of fn ∈ B, the convergence fn → f (ρ)
implies that f belongs to B;

(e) A set B⊂ Lρ is called ρ–bounded if its ρ–diameter δρ(B) = sup{ρ( f −g) : f ,g ∈ B}< ∞;

(f) A set B ⊂ Lρ is called ρ–a.e. closed if for any { fn} in C which ρ–a.e. converges to some f ,
then we must have f ∈C;

(g) Let A,B⊂ Lρ . We define the ρ–distance between the sets A and B by

dρ(A,B) = inf{ρ( f −g) : f ∈ A,g ∈ B}

and dρ( f ,B) = inf{ρ( f −g) : g ∈ B} if A consists of a single element f ;

(h) We say that a function modular ρ has the ∆2–property if supn∈Nρ(2 fn,Dk)→ 0, whenever
Dk ↓ /0 and supn∈Nρ( fn,Dk)→ 0.

(i) ([10], p.116) A function modular ρ ∈ R is called uniformly continuous if for any L > 0 and
ε > 0 there exists δ = δ (L,ε)> 0 such that if ρ(x)≤ L and ρ(y)< δ there holds the inequality
|ρ(x+ y)−ρ(x)|< ε .

Theorem 6. Let ρ ∈R. Then Lρ is ρ–complete.

Theorem 7. Let ρ ∈R. The following conditions are equivalent

(a) ρ has ∆2;

(b) L0
ρ is a linear subspace of Lρ ;

(c) Lρ = L0
ρ = Eρ ;

(d) If ρ( fn)→ 0, then ρ(2 fn)→ 0;

(e) If ρ(α fn)→ 0 for an α > 0, then ‖ fn‖ρ → 0, i.e., the modular convergence is equivalent to
the norm convergence.

Let us mention that the ρ–convergence do not imply ρ–Cauchy, since ρ– does not satisfy
the triangle inequality. If ρ has ∆2–property then ρ–convergence imply ρ–Cauchy.

Generalization of convexity properties for Banach spaces are investigated for modular func-
tion spaces in [12]. As demonstrated in [17] one concept of uniform convexity for Banach spaces
generates several different types of uniform convexity in modular function spaces. This is due
primarily to the fact that in general the modular function is not homogeneous.
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Definition 8. Let ρ ∈R and i ∈ {1,2}. Let r > 0, ε > 0. Define

Di(r,ε) = {( f ,g) : f ,g ∈ Lρ ,ρ( f )≤ r,ρ(g)≤ r,ρ
(

f −g
i

)
≥ εr}.

Let δi(r,ε) = inf
{

1− 1
r ρ

(
f+g

2

)
: ( f ,g) ∈ Di(r,ε)

}
> 0 if Di(r,ε) 6= /0 and δi(r,ε) = 1 if Di(r,ε) =

/0.

(i) We say that ρ satisfies (UCi) if for any r > 0, ε > 0 there holds the inequality δi(r,s)> 0.

(ii) We say that ρ satisfies (UUCi) if for every s ≥ 0, ε > 0 there exists ηi(s,ε) > 0, depending
on s and ε such that

δi(r,s)> ηi(s,ε)> 0 for r > s.

If ρ is (UC1) we obtain that the inequality

(1) ρ

(
x+ y

2

)
≤ r (1−δ1(r,ε))

holds for every ρ(x),ρ(y)≤ r and ρ (x− y)≥ rε .

Proposition 9. The following conditions characterize relationship between the notions, that are
defined in Definition 8

(1) (UUCi) implies (UCi) for i ∈ 1,2;

(2) δ1(r,ε)≤ δ2(r,ε);

(3) (UC1) implies (UC2);

(4) (UUC1) implies (UUC2);

(5) If ρ ∈R, then (UUC1) and (UUC2) are equivalent;

(6) I ρ is homogeneous (e.g. is a norm) then all conditions (UC1), (UC2), (UUC1) and (UUC2)
are equivalent.

Lemma 10. ([25]) Let ρ ∈R. Let ρ be (UC1), has the ∆2–property, A⊂ Lρ be a ρ–closed and con-
vex subset, B⊂Lρ be ρ–closed subset and A∪B be ρ–bounded. If the sequences {xn}∞

n=1,{zn}∞
n=1⊂

A and {yn}∞
n=1 ⊂ B be such that:

(i) limn→∞ ρ(zn− yn) = dρ ;

(ii) for every ε > 0 there exists N0 ∈ N such that for every m > n≥ N0 there holds the inequality
ρ(xm− yn)≤ dρ + ε .

Then for every ε > 0 there exists N1 ∈N such that for every m > n≥ N1 there holds the inequality
ρ(xm− zn)< ε .

Lemma 11. ([25]) Let ρ ∈ R. Let ρ be (UC1), has the ∆2–property, A be a ρ–closed and
convex subset of Lρ , B be ρ–closed subset of Lρ and A∪ B be ρ–bounded. If the sequences
{xn}∞

n=1,{zn}∞
n=1 ⊂ A and {yn}∞

n=1 ⊂ B be such that:
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(i) limn→∞ ρ(zn− yn) = dρ ;

(ii) limn→∞ ρ(xn− yn) = dρ .

Then limn→∞ ρ(xn− zn) = 0.

Lemma 12. ([25]) Let ρ ∈R. Let ρ has the ∆2–property, be uniformly continuous, A,B⊂ Lρ be
subsets and A∪B be ρ–bounded. If the sequences {xn}∞

n=1,{zn}∞
n=1 ⊂ A and {yn}∞

n=1 ⊂ B be such
that:

(i) limn→∞ ρ(zn− xn) = 0;

(ii) limn→∞ ρ(zn− yn) = dρ .

Then limn→∞ ρ(xn− yn) = dρ .

We recall that M is called an Orlicz function, provided M is even, convex, continuous non-
decreasing in [0,∞) function with M(0) = 0, M(t)> 0 for any t 6= 0. Let M be an Orlicz function
and let (Ω,Σ,µ) be a measure space. Let us consider the space L0(Ω) consisiting of all mea-
surable real–velued functions on Ω and define for every f ∈ L0(Ω) the Orlicz function modular
M̃( f ) =

∫
Ω

M( f (t))dµ(t).

Definition 13. The Orlicz space LM(Ω,Σ,µ) is the space of all classes of equivalent µ–measurable
functions f : Ω→ R over the measure space (Ω,Σ,µ) such that M̃(λ f )→ 0 as λ → 0 or equiva-
lently M̃

(
f
λ

)
< ∞ for some λ > 0.

The function M̃ is a regular convex function modular and it is called Orlicz function modular.
An extensive study of Orlicz spaces can be found in [18, 19, 22, 23].

If M(t) = |t|p, p≥ 1 we obtain the space Lp(Ω,Σ,µ). The most common examples of Orlicz
spaces are the sequence spaces `M, the function spaces LM(0,1) and LM(0,∞) that correspond
to the cases: Ω countable union of atoms of equal mass, Ω = [0,1] and Ω = (0,∞), µ the usual
Lebesgue measure.

We say that M satisfies the ∆2–condition if there exist constants C, t0 > 0, such that M(2t)≤
CM(t) for any t ≥ t0. It is easy to observe that if M satisfies the ∆2–condition, then the Orlicz
function modular M̃ has the ∆2 property.

If we restrict to the Orlicz space LM(0,1), then the Orlicz function modular is defined by

M̃( f ) =
∫ 1

0
M( f (s))dµ(s). We will denote the corresponding modular function space by LM̃(0,1).

When M = |t|p we will denote LM̃(0,1) by Lp̃(0,1).

3 Main Results
Coupled best proximity points and coupled fixed points in metric spaces are defined in [24]

and [3]. Following [24, 3] we will give definitions for coupled best proximity points and coupled
fixed points in modular function spaces.

Just to simplify the notations we will put d = dρ(A,B).

Definition 14. Let A and B be nonempty subsets of a modular function space Lρ , F : A×A→ B.
An ordered pair (x,y) ∈ A×A is called a coupled best proximity point of F if

ρ(x−F(x,y)) = ρ(y−F(y,x)) = d.
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Definition 15. Let A be nonempty subset of a modular function space X, F : A×A→A. An ordered
pair (x,y) ∈ A×A is said to be a coupled fixed point of F in A if x = F(x,y) and y = F(y,x).

It is easy to see that if A = B in Definition 14, then a coupled best proximity point reduces to
a coupled fixed point.

Iterated sequences for investigation of existence of coupled best proximity points and cou-
pled fixed points in metric spaces is defined in [3, 24]. Following [24, 3] we will give definitions
for these iterated sequences in modular functional spaces.

Definition 16. ([24])Let A and B be nonempty subsets of a modular function space Lρ . Let F :
A×A→ B and G : B×B→ A. For any pair (x,y) ∈ A×A we define the sequences {xn}∞

n=0 and
{yn}∞

n=0 by x0 = x, y0 = y and

x2n+1 = F(x2n,y2n), y2n+1 = F(y2n,x2n)
x2n+2 = G(x2n+1,y2n+1), y2n+2 = G(y2n+1,x2n+1)

for all n≥ 0.

We will generalize the notion of cyclic contraction pair (F,G) of maps in metric spaces
[4, 24] for modular function spaces.

Definition 17. Let A and B be nonempty subsets of a modular function space X, F : A×A→ B
and G : B×B→ A. The ordered pair (F,G) is said to be a cyclic ρ–Kannan contraction pair if
there exist non-negative number α , such that α < 1/2 and there holds the inequality

ρ(F(x,y)−G(u,v))≤ α (ρ(x−F(x,y))+ρ(u−G(u,v)))+(1−2α)d(A,B)

for all (x,y) ∈ A×A and (u,v) ∈ B×B.

Definition 18. Let A be nonempty subsets of a modular function space X, F : A×A→ A is said to
be a cyclic ρ-Kannan contraction map if there exist non-negative numbers α , such that α < 1/2
and there holds the inequality

ρ(F(x,y)−F(u,v))≤ α (ρ(x−F(x,y))+ρ(u−F(u,v)))

for all x,y,u,v ∈ A.

Theorem 19. Let ρ ∈R. Let A⊂ Lρ be nonempty, ρ–closed and ρ–bounded. Let F : A×A→ A be
a cyclic ρ-Kannan contraction map. Then F has unique coupled fixed points (x,y) ∈ A. Moreover
for any (x0,y0) ∈ A the sequences {xn}, {yn} defined by the equations:

(2)
x1 = F(x0,y0), y1 = F(y0,x0),

xn+1 = F(xn,yn), yn+1 = F(yn,xn),

n = 1,2, . . . , converge to the unique coupled fixed points (x,y) ∈ A .

Proof. From the definition of (2) we get

ρ(xn+1− xn) = ρ(F(xn,yn)−F(xn−1,yn−1))≤ αρ(xn− xn+1)+αρ(xn−1− xn)
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and
ρ(yn+1− yn) = ρ(F(yn,xn)−F(yn−1,xn−1))≤ αρ(yn− yn+1)+αρ(yn−1− yn).

And we get
ρ(xn+1− xn)≤

α

1−α
ρ(xn−1− xn)

and
ρ(yn+1− yn)≤

α

1−α
ρ(yn−1− yn).

Therefore after summing the above inequalities we get

ρ(xn+1− xn)+ρ(yn+1− yn) ≤
α

1−α
(ρ(xn− xn−1)+ρ(yn− yn−1))

≤
(

α

1−α

)2

(ρ(xn−1− xn−1)+ρ(yn−1− yn−2)

≤ ·· · ≤
(

α

1−α

)n

(ρ(x1− x0)+ρ(y1− y0)).

From the last chain of inequalities we get that for any n, p ∈ N there holds

ρ(xn+p− xn)+ρ(yn+p− yn)≤
(

α

1−α

)n

(ρ(xp− x0)+ρ(yp− y0)).

From the assumption that A is a ρ–bounded set it follows that existence of M > 0, such that
ρ(u− v)≤M for any u,v ∈ A. Consequently

ρ(xn+p− xn)+ρ(yn+p− yn)≤
(

α

1−α

)n

(ρ(xp− x0)+ρ(yp− y0))≤ 2M
(

α

1−α

)n

.

From α

1−α
∈ [0,1) it follows that for any ε > 0 there is N0 such that for any n ≥ N0, there holds(

α

1−α

)n
< ε

2M . Then for any n0 ≥ N and any p ≥ 1 the inequality max{ρ(xn+p− xn),ρ(yn+p−
yn)} ≤ 2M

(
α

1−α

)n
< ε holds. Thus for every ε > 0 there exists N0 such that for any n ≥ N0 the

inequality ρ(zn+p− zn) < ε holds, for p ∈ N and z = x or z = y. Therefore {xn} and {yn} are
Cauchy sequences. From the completeness of Lρ and the closeness of A it follows that there are
x,y ∈ A, such that limn→∞ ρ(xn− x) = 0 and limn→∞ ρ(yn− y) = 0.

We will proof that F(x,y) = x and F(y,x) = y.

ρ (x−F(x,y)) = lim
n→∞

ρ (xn+1−F(x,y))≤ lim
n→∞

ρ (F(xn,yn)−F(x,y))

≤ lim
n→∞

αρ(xn− xn+1)+αρ(x−F(x,y)).

Thus we get the inequality (1−α)ρ (x−F(x,y))≤ limn→∞ αρ(xn−xn+1) = 0, i.e. x = F(x,y). In
a similar fashion we get

ρ (y−F(y,x)) = lim
n→∞

ρ (yn+1−F(y,x))≤ lim
n→∞

ρ (F(yn,xn)−F(y,x))

≤ lim
n→∞

αρ(yn− yn+1)+αρ(y−F(y,x)).

Thus we get the inequality (1−α)ρ (y−F(y,x)) ≤ limn→∞ αρ(yn− yn+1) = 0, i.e. x = F(x,y).
Therefore (x,y) is coupled fixed points of F in A.
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Suppose (u,v) is another coupled fixed points of F in A i.e. u = F(u,v) and v = F(v,u).
From the inequalities

ρ(x−u) = ρ(F(x,y)−F(u,v)≤ αρ(x−F(x,y))+αρ(u−F(u,v))

and
ρ(y− v) = ρ(F(y,x)−F(v,u)≤ αρ(y−F(y,x))+αρ(v−F(v,u))

we get that ρ(x−u) = ρ(y− v) = 0, which is a contradiction. So the assumption that there exists
second coupled fixed points is not true.

By what we have just proved for any initial guess (u0,v0) the sequences {un}∞
n=1 and {vn}∞

n=1
defined in (2) converge to a coupled fixed point (u,v) of F in A, which is unique. Thus {un}∞

n=1
and {vn}∞

n=1 converge to the coupled fixed point (x,y)

Theorem 20. Let ρ ∈ R. Assume that ρ satisfies (UC1), has the ∆2–property and be uniformly
continuous. Let A,B⊆ Lρ be ρ–closed, ρ–bounded, convex subsets, F : A×A→B and G : B×B→
A and the ordered pair (F,G) be an cyclic ρ–Kannan contraction pair. Then there exists a unique
order pair (x,y) ∈ A×A such that (x,y) is a coupled ρ–best proximity points of F in A (i.e. ρ(x−
F(x,y))+ρ(y−F(y,x)) = 2d(A,B)). There holds x = G(F(x,y),F(y,x)), y = G(F(y,x),F(x,y))
the order pair (F(y,x),F(x,y)) is a coupled ρ–best proximity points of G in B. More over for any
initial guess (x0,y0) ∈ A×A the iterated sequences {xn}, {yn} defined by

(3)
x2n+1 = F(x2n,y2n), y2n+1 = F(y2n,x2n),
x2n+2 = G(x2n+1,y2n+1),y2n+2 = G(y2n+1,x2n+1),
n = 0,1,2 . . .

satisfied

lim
n→∞

ρ(x2n− x) = 0, lim
n→∞

ρ(y2n− y) = 0, lim
n→∞

ρ(x2n+1−F(x,y)) = 0, lim
n→∞

ρ(y2n+1−F(y,x)) = 0.

Lemma 21. Let ρ ∈ R. Assume that ρ satisfies (UC1), has the ∆2–property and be uniformly
continuous. Let A,B⊂ Lρ be nonempty, ρ–closed and ρ–bounded, convex subsets, F : A×A→ B
and G : B×B→ A and the ordered pair (F,G) be a cyclic ρ–Kannan contraction pair. If (x0,y0)∈
A and we define:

x2n+1 = F(x2n,y2n), y2n+1 = F(y2n,x2n)
x2n+2 = G(x2n+1,y2n+1), y2n+2 = G(y2n+1,x2n+1)

for all n ∈ N ∪{0}, then lim
n→∞

ρ(x2n− x2n+1) = d, lim
n→∞

ρ(y2n− y2n+1) = d.

Proof. From the assumption that (F,G) is a cyclic ρ–Kannan contraction pair we get

ρ(x2n+1− x2n) = ρ(F(x2n,y2n)−G(x2n−1,y2n−1))
≤ αρ(x2n− x2n+1)+αρ(x2n−1− x2n)+(1−2α)d

and
ρ(y2n+1− y2n) = ρ(F(y2n,x2n)−G(y2n−1,x2n−1))

≤ αρ(y2n− y2n+1)+αρ(y2n−1− y2n))+(1−2α)d.

Therefore

ρ(x2n+1− x2n)≤
α

1−α
ρ(x2n− x2n−1)+

(
1− α

1−α

)
d
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and

ρ(y2n+1− y2n)≤
α

1−α
ρ(y2n− y2n−1)+

(
1− α

1−α

)
d

Thus
ρ(x2n+1− x2n)−d ≤

(
α

1−α

)
(ρ(x2n− x2n−1)−d)

≤ ·· ·
≤

(
α

1−α

)2n
(ρ(x1− x0)−d)

ρ(y2n+1− y2n)−d ≤
(

α

1−α

)
(ρ(y2n− y2n−1)−d)

≤ ·· ·
≤

(
α

1−α

)2n
(ρ(y1− y0)−d)

Therefore limn→∞ ρ(x2n− x2n+1) = d and limn→∞ = ρ(y2n− y2n+1) = d.

Lemma 22. Let ρ ∈ R. Assume that ρ satisfies (UC1), has the ∆2–property and be uniformly
continuous. Let A,B⊆ Lρ be ρ–closed, ρ–bounded, convex subsets, F : A×A→B and G : B×B→
A and the ordered pair (F,G) be a cyclic ρ–Kannan contraction pair. If (x0,y0) ∈ A×A and we
define:

x2n+1 = F(x2n,y2n), y2n+1 = F(y2n,x2n)
x2n+2 = G(x2n+1,y2n+1), y2n+2 = G(y2n+1,x2n+1)

for all n ∈ N ∪{0}, then for ε > 0, there exists a positive integer N0 such that for all m > n ≥ N0
such that n+m is an odd number we have ρ(xm− xn)+ρ(ym− xn)< 2d + ε .

Proof. From the assumption that (F,G) is a cyclic ρ–Kannan contraction pair we get

ρ(x2m− x2n+1) = ρ(G(x2m−1,y2m−1)−F(x2n,y2n))
≤ αρ(x2m−1− x2m)+αρ(x2n− x2n+1)+(1−2α)d.

Thus
ρ(x2m− x2n+1)−d ≤ α (ρ(x2m−1− x2m)−d)+α (ρ(x2n− x2n+1)−d)

≤
(

α

1−α

)2m−1
α (ρ(x0− x1)−d)+

(
α

1−α

)2n
α (ρ(x0− x1)−d)

and
ρ(y2m− y2n+1) = ρ(G(y2m−1,x2m−1)−F(y2n,x2n))

≤ αρ(y2m−1− y2m)+αρ(x2n− x2n+1)+(1−2α)d
Thus

ρ(y2m− y2n+1)−d ≤ α (ρ(y2m−1− y2m)−d)+α (ρ(y2n− y2n+1)−d)
≤

(
α

1−α

)2m−1
α (ρ(y0− y1)−d)+

(
α

1−α

)2n
α (ρ(y0− y1)−d)

Therefore for any ε > 0, there exists a positive integer N0 such that for all m > n ≥ N0 such that
n+m is an odd number we have ρ(xm− xn)+ρ(ym− xn)< 2d + ε .

Lemma 23. Let ρ ∈ R. Assume that ρ satisfies (UC1), has the ∆2–property and be uniformly
continuous. Let A,B⊆ Lρ be ρ–closed, ρ–bounded, convex subsets, F : A×A→B and G : B×B→
A and the ordered pair (F,G) be a cyclic ρ–Kannan contraction pair. If (x0,y0) ∈ A×A and we
define:

x2n+1 = F(x2n,y2n), y2n+1 = F(y2n,x2n)
x2n+2 = G(x2n+1,y2n+1), y2n+2 = G(y2n+1,x2n+1).

for all n ∈ N ∪{0}. If the sequences {x2n}∞
n=0 and {y2n}∞

n=0 are ρ–convergent to x and y respec-
tively, then ρ(x−F(x,y)) = d and ρ(y−F(y,x)) = d.
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Proof. From Lemma 21 we have that there hold the equalities limn→∞ ρ(x2n− x2n+1) = d and
limn→∞ ρ(x2n+2− x2n+1) = d. Thus from Lemma 11 we obtain limn→∞ ρ(x2n− x2n+2) = 0. From
limn→∞ ρ(x2n−x2n−1)= d and limn→∞ ρ(x2n−x)= 0 applying Lemma 12 we get limn→∞ ρ(x2n−1−
x) = d.

From Lemma 21 we have that there hold the equalities limn→∞ ρ(y2n − y2n+1) = d and
limn→∞ ρ(y2n+2− y2n+1) = d. Thus from Lemma 11 we obtain limn→∞ ρ(y2n− y2n+2) = 0. From
limn→∞ ρ(y2n−y2n−1)= d and limn→∞ ρ(y2n−y)= 0 applying Lemma 12 we get limn→∞ ρ(y2n−1−
y) = d.

Since

ρ(F(x,y)− x) ≤ lim
n→∞

ρ(F(x,y)− x2n) = lim
n→∞

ρ(F(x,y)−G(x2n−1,y2n−1))

≤ lim
n→∞

[αρ(x−F(x,y))+αρ(x2n−1− x2n)+(1−2α)d] = d.

Thus

(1−α)d ≤ (1−α)ρ(F(x,y)− x)≤ lim
n→∞

αρ(x2n−1− x2n)+(1−2α)d = (1−α)d.

Consequently ρ(F(x,y)− x) = d.
Since

ρ(F(y,x)− y) ≤ lim
n→∞

ρ(F(y,x)− y2n) = lim
n→∞

ρ(F(y,x)−G(y2n−1,x2n−1))

≤ lim
n→∞

[αρ(y−F(y,x))+αρ(y2n−1− y2n)+(1−2α)d] = d.

Thus

(1−α)d ≤ (1−α)ρ(F(y,x)− y)≤ lim
n→∞

αρ(y2n−1− y2n)+(1−2α)d = (1−α)d.

Consequently ρ(F(y,x)− y) = d.

Proof of Theorem 20. For and pair (x0,y0) ∈ (A×A) we consider the sequences {xn}, {yn}. From
Lemma 21 we have that limn→∞ ρ(x2n− x2n+1) = d. By Lemma 22 we have that for every ε > 0
there exists N0 ∈N, such that there holds the inequality ρ(x2m−x2n+1)< d+ε for every m,n≥N0.
From Lemma 10 by setting zn = x2n, xm = x2m and yn = x2n+1 it follows there exists N1 ∈ N, such
that the inequality ρ(T 2mx− T 2nx) < ε holds for every m > n ≥ N1. Therefore the sequence
{x2n}∞

n=1 is a ρ–Cauchy sequence. The proof that {y2n}∞
n=1 is a ρ–Cauchy sequence can be made

in a similar fashion.
From the completeness of Lρ and closeness of A is follows that there are x,y ∈ A, such that

limn→∞ ρ(x2n−x) = 0 and limn→∞ ρ(y2n−y) = 0. By Lemma 23 it follows that (x,y) is a coupled
ρ–best proximity point.

First we will prove that if (x,y) is a coupled ρ–best proximity point then there holds

x = G(F(x,y),F(y,x)) and y = G(F(y,x),F(x,y)).

From the inequality

S1 = ρ(F(x,y)−G(F(x,y),F(y,x)))
≤ αρ(x−F(x,y))+αρ(F(x,y)−G(F(x,y),F(y,x)))+(1−2α)d
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we get
(1−α)d ≤ (1−α)ρ(F(x,y)−G(F(x,y),F(y,x)))

≤ αρ(x−F(x,y))+(1−2α)d = (1−α)d

and thus it follows that ρ(F(x,y)−G(F(x,y),F(y,x))) = d. From the equality ρ(F(x,y)− x) = d
and Lemma 11 it follows that x = G(F(x,y),F(y,x)). By similar arguments from the inequality

S2 = ρ(F(y,x)−G(F(y,x),F(x,y)))
≤ αρ(y−F(y,x))+αρ(F(y,x)−G(F(y,x),F(x,y)))+(1−2α)d

we get
(1−α)d ≤ (1−α)ρ(F(y,x)−G(F(y,x),F(x,y)))

≤ αρ(y−F(y,x))+(1−2α)d(A,B) = (1−α)d

and thus it follows that ρ(F(y,x)−G(F(y,x),F(x,y))) = d. From the equality ρ(F(y,x)− y) = d
and Lemma 11 it follows that y = G(F(y,x),F(x,y)).

Consequently (F(x,y),F(y,x)) is a coupled best proximity point of G in B.
It remains to prove that the coupled best proximity points is unique. Let us suppose the

contrary, i.e. there exists (u,v) ∈ A× A such that ρ(x− u) + ρ(y− v) > 0. We can write the
inequalities

(4)
d = ρ(F(x,y)−u) = ρ(F(x,y)−G(F(u,v),F(v,u)))
≤ αρ(x−F(x,y))+αρ(F(u,v)−G(F(u,v),F(v,u)))+(1−2α)d
= αρ(x−F(x,y))+αρ(F(u,v)−u)+(1−2α)d = d,

(5)
d = ρ(F(y,x)− v) = ρ(F(y,x)−G(F(v,u),F(u,v)))
≤ αρ(y−F(y,x))+αρ(F(y,x)−G(F(v,u),F(u,v)))+(1−2α)d
= αρ(y−F(y,x))+αρ(F(y,x)− y)+(1−2α)d = d,

(6)
S3 = ρ(F(u,v)− x) = ρ(F(u,v)−G(F(x,y),F(y,x)))
≤ αρ(u−F(u,v))+αρ(F(x,y)−G(F(x,y),F(y,x)))+(1−2α)d,

(7)
S4 = ρ(F(v,u)− y) = ρ(F(v,u)−G(F(y,x),F(x,y)))
≤ αρ(v−F(v,u))+αρ(F(y,x)−G(F(y,x),F(x,y)))+(1−2α)d.

Therefore

ρ(F(x,y)−u) = ρ(F(y,x)− v) = ρ(F(u,v)− x) = ρ(F(v,u)− y) = d.

From
ρ(F(x,y)− x) = ρ(F(y,x)− y) = ρ(F(u,v)−u) = ρ(F(v,u)− v) = d.

and Lemma 11 it follows that x = u and y = v.
From Lemma 23 it follows that for every ε > 0 there exists N, such that for any n,m ≥ N

there holds ρ(x2n−x2m+1)≤ d+ε . Therefore applying Lemma 10 and limn→∞ ρ(x2n−x2n+1) = d
it follows that {x2n+1}∞

n=1 is a Cauchy sequence. From the completeness of Lρ and closeness of B
it follows that there is x ∈ B such that limn→∞ ρ(x2n+1− x) = 0.
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By similar arguments we get from Lemma 23 it follows that for every ε > 0 there exists
N, such that for any n,m ≥ N there holds ρ(y2n− y2m+1) ≤ d + ε . Therefore applying Lemma
10 and limn→∞ ρ(y2n− y2n+1) = d it follows that {y2n+1}∞

n=1 is a Cauchy sequence. From the
completeness of Lρ and closeness of B it follows that there is y∈ B such that lim

n→∞
ρ(y2n+1−y) = 0.

We will show that x = F(x,y) and y = F(y,x).
From limn→∞ ρ(x2n+1− x) = 0, limn→∞ ρ(x2n+1− x2n) = d and Lemma 12 it follows that

limn→∞ ρ(x2n−x)= d. Using the uniform continuity of ρ we get ρ(x−x)= limn→∞ ρ(x2n−x)= d.
By ρ(x−F(x,y)) = d and Lemma 10 it follows that x = F(x,y).

From limn→∞ ρ(y2n+1− y) = 0, limn→∞ ρ(y2n+1− y2n) = d and Lemma 12 it follows that
limn→∞ ρ(y2n−y)= d. Using the uniform continuity of ρ we get ρ(y−y)= limn→∞ ρ(y2n−y)= d.
By ρ(y−F(y,x)) = d and Lemma 10 it follows that y = F(y,x).

It remains to show that any iterated sequences {xn}∞
n=1 and {yn}∞

n=1 are ρ–convergent to-
wards the uniques coupled best proximity points (x,y) of F in A

Indeed by taking of an arbitrary initial guess (u0,v0) ∈ A×A we get, that the iterated se-
quences {un}∞

n=1 and {vn}∞
n=1 are ρ–convergent towards a coupled best proximity points (u,v) of

F in A. From the uniqueness coupled best proximity points (x,y) of F in A it follows that {un}∞
n=1

and {vn}∞
n=1 are ρ–convergent towards the unique coupled best proximity points (x,y) of F in A.�

REFERENCES:
[1] Bhaskar, T.G., V. Lakshmikantham, V. Fixed Point Theorems in Partially Ordered Metric Spaces and Applica-

tions. Nonlinear Anal., 65 (7) (2006), 1379–1393.

[2] Eldred, A. Veeramani, P. Existence and Convergence of Best Proximity Points. J. Math. Anal. Appl., 323 (2)
(2006), 1001–1006. http://dx.doi.org/10.1016/j.jmaa.2005.10.081.

[3] Guo, D., Lakshmikantham, V. Coupled Fixed Points of Nonlinear Operators with Applications. Nonlinear Anal.,
11 (5) (1987), 623–632. http://dx.doi.org/10.1016/0362-546X(87)90077-0.

[4] Animesh Gupta, Rajput, S.S., Kaurav, P.S. Coupled Best Proximity Point Theorem in Metric Spaces. Int. J. Anal.
Appl., 4 (2) (2014), 201–215.

[5] Harjani, J., López, B., Sadarangani, K. Fixed Point Theorems for Mixed Monotone Operators and Applications
to Integral Equations. Nonlinear Anal., 74 (5) (2011), 1749âĂŞ-1760.
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