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ON TWO MODIFICATIONS OF WEIERSTRASS-DOCHEV’S ITERATIVE
METHOD FOR SOLVING POLYNOMIAL EQUATIONS

GYURHAN H. NEDZHIBOV

ABSTRACT: In this work we investigate two new modifications of the known Weierstrass iterative
method for solving polynomial equations. The new iterative methods are obtained by using the
companion matrix method and similarity transformation of companion matrices. One dimensional case of
the presented methods is also investigated. Analysis of convergence is also provided.

KEYWORDS: Polynomial equations, Weierstrass-Dochev’s iterative method, Companion matrix
method, Simultaneous rootfinding methods.

1. INTRODUCTION

Let us consider a monic polynomial

(1.1) px)=x"+a, x"" +...+ax+a,,

with simple real or complex zeros «,,a,,...,c, and let x,,x,,...,x, be approximations of those
zeros. One of the most popular iterative methods for approximating, simultaneously, all the zeros of

polynomials is presented by the formula

k
(1.2) xk”:xk—&, where i=1,...,n and £k£=0,12,....

i i n

[T -)

J#l

It is known as Weierstrass’ method (or WDK method, see [1]) and the quotient

(13) W =W =20

H(xi -X j)

J#l
is called Weierstrass correction. Algorithm (1.2) has been rediscovered several times by different
authors like Durand [2], Dochev [3], Borsch-Supan [4], Kerner [5], Presi¢ [6] and by many other
authors. Dochev was the first who proved the quadratic convergence of this algorithm.

Our goal in this work is promote and explore two new modifications of the WDK method
obtained by using the companion matrix method. The paper is organized as follows. In Section 2 the
new modifications of WDK method are presented. Analysis of convergence is provided in Section
3.0ne dimensional case is explored in Section 4.

2. PRELIMINARY RESULTS

In our previous works (see [7,8]) we investigate the companion matrix method and similarity
transformations between some companion matrices. Let us consider a part of the results.
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2.1 Companion matrices and some similarity transformations

It is well known that the zeros of a polynomial can be obtained by computing the eigenvalues
of the corresponding companion matrix.

Definition 2.1 An nxnmatrix A=A, is called generalized companion matrix for a polynomial p(x)
presented in (1.1) if the zeros a,,Q,,...,a, of p is the set of the eigenvalues of A.

Thus the problem of finding the zeros of p(x) can be transformed to the problem of finding the
eigenvalues of A4, i.e eigenvalue problem of A, where matrix methods can be applied. There are
many companion matrices for calculating polynomial zeros.

Probably the best known examples of generalized companion matrices whose eigenvalues are
precisely the roots of the corresponding polynomial is the Frobenius companion matrix, which is
defined directly in terms of the coefficients of the polynomial, is. For the polynomial (1.1) the
Frobenius matrix is given by

0
(2.1) F=F,=
4y —4 o Ty

It is easy to verify that the characteristic polynomial of F satisfies the equation

(22) [I-F,|=px)

and the eigenpair of F, is (a,., vi), where V' = (a.j - )';.:1 is the right eigenvector corresponding to ¢, .

1

The corresponding eigenvector matrix of the Frobenius matrix (2.1) is

al az an
2.3) V=V(a,,..,a,)=
aln—l a;—l . a:—l

This matrix is known as Vandermonde matrix and it is invertible if and only if all the ¢,,,,...,a

n

are distinct. Then the diagonalization of Frobenius matrix is

(24) V' (@)F,V(a)=A=diag(a,),

where a =(¢,,,,...,a,).

In [7] (see Theorem 2), we prove the following theorem.
Theorem 2.1 Let consider a monic polynomial p(x) of degree n (1.1), with simple zeros
a,,a,,...,a, and corresponding companion matrix (2.1). If x,,x,,...,x, are distinct approximations

of the zeros, then the matrix

-85 -



MATTEX 2014 PA3JIE]I MATEMATHUKA
Tom 1

2.5) G=V'(x)FV(x)=D-v'u", D=diagix,},
where u and v are defined by

1 1
26) u= (p(xl),p(xz),...,p(xn))T and v=| — yer

H(xl_xj) H(xn_xj)

j=2 Jj=1

and V(x)is the Vandermonde matrix of x=(x,,x,,...,x,), is diagonal plus rank one companion

matrix of p.
For the entries of the matrix G in Theorem 2.1 we have

G, =x &=xi ~W,(x) and G; = ———"— p(x,)

” | ﬁ(xi_xj) H(xi_x_/)

J# J#

fori=j.

For some recent results on this topic see for example [10], [11], [12], [13] and references therein.
Also the following corollary is fulfilled.
Corollary 2.1 From Theorem 2.1 it follows that the matrix iterative sequence

Q7 G =VT'GMHFEV(Y, k=012,...

where x* =(x{,x},...,x}) and x! =G} for k>0 (i.e. x! is the diagonal entry of matrix G at row
i), will converge to the diagonal matrix A =diag(c,).

Therefore, we can consider algorithm (2.7) as a matrix version of the WDK iterative method (1.2).
Using that the equation (2.4) is equivalent to the following equation

28) V' (a)F,V(a)=A"= diag(i
.

j where o, #0 fori=1,...,n.
For the diagonal entries of the following matrix
29) H=V'(x)F'V(x)=(H,)

is obtained the form

(see Theorem 4.1 in [8]).

By analogy of Corollary 2.1 we consider the matrix iterative sequence

.11 H*' =y~ (x")Fp‘lV(x"), k=0,12,...
where x* =(x{,x5,...,x*) and x' = H} for k>0, (i.e. x is the diagonal entry of matrix H at row
1) and we expect that this sequence will converge to the diagonal matrix A = diag(%{ j .

2.2 First modification
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In [8] using (2.10)-(2.11) we suggest the following iterative function for simultaneous
approximation of all the zeros of polynomials

k
X

pehH X
e § ey

called inverse WDK method.

(2.12) x*'=

,i=1,...,n,(where a, #0)

2.3 Second modification

Using the Vietas formula for the monic polynomial defined by (1.1)
a,=(-D"[]e;,
j=1

the iterative function (2.12) is modified as

k

+ xi
(213) xl.k ! :W,

k
Xi

1+

where i=1,...,n and W' =W(x") is the Weierstrass correction. The iteration (2.13) is called
modified inverse WDK method.

3. ANALYSIS OF CONVERGENCE

3.1 First modification
Let us consider the roots of polynomial (1.1) as a vector a =(a;,,,...,2,) € C". Then we say
that « is a root-vector of polynomial p(x). In [9], J. Traub presents the following result.

Theorem 3.1 Let ¢, = ¢,(x,,...,x,) and the vector function ¢(x)=(@,,¢,,...,9,) has a fixed point

at the point o = (&, ,,...,a,) . If for an integer r>1

o'p.(a )
L):O; 1<s<r-1; 1<i,s,....5, <n
Oz ...0z
and for at least one combination i,s,,...,s,
0o (x
¢ (a) 40,
0z ...0z

S Sk

is fulfilled, then for sufficiently close approximation x°=(x',...,x)) of a=(a,,...,a,), the

iteration
X =p(x"), k=012,...

converges to o with r order of convergence.
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Now let us consider the iterative functions (2.12) as the vector function:

X,
2.14) o(x) =(¢,(x),....,9,(x)), where ¢, (x) = , i=l...,n

Jj#i (x X )
Obviously a =(«,,...,a,) is a fixed point for this functions, i.e. ()=« . It is not difficult to
verify that:
09, ()

=0 isvalid forall i, j =1,...,n,
8xj

2
but not fulfilled % =0 for all i,j=1,...,n. Theorem 3.1 implies that the iteration (2.12)
Xi0X

converges with second order of convergence.
3.2 Second modification

In this subsection we analyze the local convergence property of modified inverse WDK method
(2.13). The following theorem deals with the order of the convergence of the method.

Theorem 3.2 Let consider a monic polynomial p(x) of degree n defined by (1.1), with simple zeros
a,,a,,...,a,. Then for sufficiently close distinct initial approximations x,,...,x. of the zeros
respectively the iterative method (2.13) is convergent to the zeros with second order of

convergence.
Proof. For the sake of brevity we denote:

~ k+1 k k+1 k k
X, =X, X, =x;, &=x -—a, &=x —a and W =W (x").

In another description formula (k2.13) is

Lo R i
X, =X, —
I+
xi
Thus we get the expression
n J— n —
| S I EES I (s
- x. —x. X, —X. X.
A J#i J#i
‘9[ :‘95 1— ! J =8[ i J i
I+ I+
X, X,

The following correlation is known in the literature

n xl p— a n

| et

jEi X _x k=i Xp T X e X _xj

Then after some expressions we get
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— k-1
I8 p A A

] o D | s

Xije X Xy ke Xy T X e X T X

éi =g,
n p—
c X, —a,

1+=T7

Xi i X _xj

If we adopt that the absolute values of all the errors ¢; for j=1,...,n are of the same order, say

‘g j‘ = Oqg ), then we obtain the expression

1 nox. —a n k-1

7Hi _,-_Z 1 Hxi—ak

X Tjwi X, —X; ki X — Xp J#i X —X

5 ofe’),

& "x,.—aj ‘

1+"H

X, A XX

which proves the theorem.
4. INVERSE NEWTON ITERATIVE METHOD

It is known that the Weierstrass iterative function (1.2) is a generalization of the known Newton
iterative method

@.1) x*'=x —u(x"), for k=0,1,2,...,

k
X
where u(xk ) = # and f is a nonlinear function.
S'(x7)
Now let us consider the corresponding method of (2.13) in the one dimensional case
k k
X u(x
(4.2) x*' =———— or x = x* —(—)k,
u(x") u(x")
1+— 1+—
X X

where k£ =0,1,2,.... Further we refer to (4.2) as Inverse Newton iterative method.

The following local convergence theorem is valid.
Theorem 4.1 Let / € C’[a,b], f'# 0 for every x €[a,b] and a is a root of the equation f(x)=0
located in the interval (a,b). Then for sufficiently close initial approximation x° € (a,b) the
iterative method (4.2) is convergent to a with second order of convergence.
Proof. For the sake of brevity denote x = x*. Let denote the right side of (4.2) with

X

(x)

l+—=
X

p(x) =

Using the known expressions
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f'(@)’ = f(@)f"(@)
= 0 N ! =
u(ar) u'(a) @)

Newton’s iterative method), we get that p() = «r, i.e. « is a fixed point for the function ¢(x).

=1 and u'"(a)=0 (from the convergence analysis of

Then for the first derivative of ¢ we have
x° + 2xu(x) — x’u'(x)
(x +u(x)’

9'(x) =

b

which implies

a’ +2ou(a)-a’u'(a) 0

P = u(@)’

It is not difficult to verify that

¢"(@)#0,
then from Theorem 3.1 (for n=1) it follows that the Inverse Newton iterative method (4.2) is
convergent with second order of convergence.
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