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ABSTRACT: We consider spectral stability for periodic wave solutions for the coupled Klein-
Gordon equation. We find conditions on parameters of the waves which imply stability and instabilty of
periodic standing waves. This is achieved via the abstract stability criteria developed by [1]
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1 Introduction
Consider the following coupled Klein-Gordon equations

(1)

∣∣∣∣∣∣
utt−uxx +u− (|u|2 +β |v|2)u = 0

vtt− vxx + v− (β |u|2 + |v|2)v = 0,

where u and v are complex valued functions, and β is real parameter. This system arise as a model
of the interaction of two fields [10]. System (1) also can be interpreted as a coupled version of the
Klein-Gordon equation

(2) utt−uxx +u−|u|2u = 0.

The existence and stability properties of standing wave u(t,x) = eiwtϕ(x) is an important ques-
tion both from theoretical and practical point of view. For the classical nonlinear Klein-Gordon
equation

(3) utt−∆u+u−|u|pu = 0

Shatah [8] proved the orbital stability of standing waves for d ≥ 3 and 1 < p < 1+ 4
d , wp,d < |w|<

1. Sufficient conditions for instability are given in [3, 5, 6]. The orbital instability for d ≥ 3 and
1+ 4

d < p < 1+ 4
d−2 is established in [9]. Complete characterizations of the linear stability for all

values of p > 1, all dimensions d ≥ 1 and all values of w ∈ (−1,1) is given in [12].
The stability of periodic waves have been studied extensively in the last decade. The exis-

tence and orbital stability of periodic standing waves in one dimensional case for the equation (3)
was considered in [7]. The stability and instability of dnoidal and cnoidal type periodic standing
waves is obtained by using the theory developed in [5, 6].

General abstract framework of spectral stability for second order Hamiltonian systems, re-
cently developed in [1, 11, 12]. In [11, 12] is studied the stability problem of second order in
time nonlinear differential equations on the hole line. In these papers, the authors applied the ab-
stract results to the Boussinesq, Klein-Gordon, and Klein-Gordon-Zakharov equations. In [1], the
authors developed the instability index theory for quadratic operator pencils. Using the abstract
results of [1] in [2] is studied the spectral stability of two parametric periodic traveling-standing
wave solution of the equation (3) in one dimensional case.

In this paper we are interested in spectral stability of periodic standing waves. It is well
known that the spectra of linearized equation depends on the choice of function space. In the space
∗This work is partially supported by Scientific Grant RD-08-119/2018 of Shumen University
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of periodic functions spectrum consists of isolated eigenvalues, while in the space of bounded
functions the spectrum is continuous.

Using the theory developed in [1, 11, 12] for the spectral stability of waves for the second
order in time nonlinear equations, we give a complete characterization of the linear stability of
dnoidal periodic standing waves for the equation (1) with respect to the perturbation of the same
period.

The paper is organized as follows. In Section 2, we present the construction of our main
object of study - the periodic standing waves. This is not a new material by any means, but we
do it in order to single out the solutions of interest. In Section 3, we setup the spectral stability
problem and we outline the theory for linearized stability for second order PDE in [1], and point
out to the relevant spectral theoretic results about their linearized operators. In Section 4, we prove
the main results.

2 Periodic standing waves
In this section we will construct the periodic standings waves for the system (1) in the form

u(t,x) = eiwtϕ(x), v(t,x) = eiwtψ(x), where ϕ and ψ are periodic functions with period 2T . Plug-
ging in the system , we obtain

(4)

∣∣∣∣∣∣
−ϕ ′′+σϕ− (ϕ2 +βψ2)ϕ = 0

−ψ ′′+σψ− (βϕ2 +ψ2)ψ = 0,

We now looking for periodic standing wave solutions of (4) in two cases of interest.

2.1 case (ϕ,0)
In this case we look for periodic waves for the equation (4) when ψ = 0. Now equation (4)

is reduced to the equation

(5) −ϕ
′′+(1−w2)ϕ−ϕ

3 = 0.

Integrating once the above equation, we get

(6) ϕ
′2 =−1

2
ϕ

4 +σϕ
2 +

a
2
,

or

(7) ϕ
′2 =

1
2
(
−ϕ

4 +2σϕ
2 +a

)
,

where σ = 1−w2 and a is a constant of integration. Let a < 0 and σ > 0. Denote by ϕ0 > ϕ1 > 0
the positive solutions of −ρ4 +2σρ2 +a = 0. Then ϕ1 ≤ ϕ ≤ ϕ0 and the solution ϕ

(8) ϕ(x) = ϕ0dn(αx,κ),

where

(9) ϕ
2
0 +ϕ

2
1 = 2σ , α =

√
1
2

ϕ0, κ
2 =

ϕ2
0 −ϕ2

1

ϕ2
0

=
2ϕ2

0 −2σ

ϕ2
0

.
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Since dn has a fundamental period 2K(κ), then the fundamental period of solution (8) is

(10) 2T =
2K(κ)

α
, T ∈ I =

(√
2π√
σ

,∞

)
.

Here and below K(k) and E(k) are, as usual, the complete elliptic integrals of the first and
second kind in a Legendre form.

2.2 case (ϕ,ϕ)
We consider the case ϕ = ψ . For the periodic function ϕ , we have the following ODE

(11) −ϕ
′′+σϕ− (β +1)ϕ3 = 0.

Multiplying the equation (11) by ϕ ′ and integrating, we obtain the equation

(12) ϕ
′2 =

β +1
2

[
−ϕ

4 +
2σ

β +1
ϕ

2 +a
]
,

where a is a constant of integration. Let ϕ0 > ϕ1 > 0 are positive roots of the polynomial −ρ4 +
2σ

β+1ρ2 +a. Then up to translation the solution of (12) is given by

(13) ϕ(x) = ϕ0dn(αx,κ),

where

(14) ϕ
2
0 +ϕ

2
1 =

2σ

β +1
, α =

√
β +1

2
ϕ0, κ

2 =
ϕ2

0 −ϕ2
1

ϕ2
0

.

3 Linearized Equation
In this section, we set up the linearized problem for (1). We show that it reduced to the study

of quadratic operator pencil, for which the general theory is developed in [1, 11, 12]. We take the
perturbation in the form

u(t,x) = eiwt(ϕ(x)+ p(t,x)), u(t,x) = eiwt(ϕ(x)+q(t,x)),

where p(t,x) and q(t,x) are complex valued functions. Plugging this ansatz in (1) and ignoring all
quadratic and higher order terms yields the following linear equation for (p,q)

(15)


ptt +2iwpt− pxx +σ p− (β +1)ϕ2 p−2ϕ2Rep−2βϕ2Req = 0

qtt +2iwqt−qxx +σq− (β +1)ϕ2q−2ϕ2Req−2βϕ2Rep = 0

Splitting the real and imaginary parts p = F + iG, q = R+ iS allows us to rewrite the linearized
problem as the following system

(16) ~Utt + J~Ut +H ~U = 0,
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where ~U = (F,R,G,S) and

J =


0 0 −2w 0
0 0 0 −2w

2w 0 0 0
0 2w 0 0

 H =


H1 −2βϕψ 0 0

−2βϕψ H2 0 0
0 0 H3 0
0 0 0 H4

 ,

H1 =−∂ 2
x +σ −3ϕ2−βψ2

H2 =−∂ 2
x +σ −βϕ2−3ψ2

H3 =−∂ 2
x +σ −ϕ2−βψ2

H4 =−∂ 2
x +σ −βϕ2−ψ2.

Note that H ∗ = H , while J∗ =−J. If we consider the eigenvalue problem associated with
(16), that is ~U = eλ t~V , we arrive at

(17) λ
2~V +λJ~V +H ~V = 0

Definition 1. We say that the quadratic pencil given by the couple (J,H) is scpectrally unstable,
if there exists an T periodic function ~V ∈ D(H ) and λ : ℜλ > 0, so that

λ
2~V +λJ~V +H~V = 0.

Otherwise, we say that the quadratic pencil (J,H) is stable.

3.1 Stability of quadratic pencils
We now present the theory developed in [1] for the stability of quadratic pencils, which we

will be able to apply to our problem (17). We only present a corollary of the results therein, which
fits our purposes. We start with some notations.

For a self-adjoint operator H, define the number of the negative eigenvalues

n(H) = #{λ ∈ (−∞,0)∩σ(H)

Next, for a subspace M denote PM : M → M to be the orthogonal projection onto the subspace
M and P⊥M := Id − PM. For an operator T , denote TM := PMT PM. In particular, if M is finite
dimensional, with orthogonal basis {χ j}n

j=1, PM is given in a matrix form by {〈T χi,χ j〉}n
i, j=1.

Theorem 1. Let H = H∗, so that n(H)< ∞ and dim(Ker(H))< ∞. Assume that

1.

(18) (P⊥H HP⊥H )−1,(P⊥H HP⊥H )−1P⊥H JP⊥H ,

are both compact operators on L2.

2. There exists a positive operator S, so that XS = {u : 〈Su,Su〉< ∞} is dense in L2.

3. S−1JS−1,S−1 are compact, whereas S(H +λ )−1S is compact for λ >> 1.

4. J : Ker(H)→ Ker(H)⊥
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5. (Id− JH−1J)|Ker(H) is invertible†

Then,

(19) kr + kc + k− = n(H)−n((Id− JH−1J)|Ker(H)).

where kr is the number of positive solutions λ of (17), k− is the number of solutions λ of (17) with
positive real part, whereas kc is the total Krein index for the quadratic pencil.

Remark: The non-negative integers kc, k− are even. As a consequence, if n(H) = 1, it
follows from (19) that kc = k− = 0 and

(20) kr = 1−n((Id− JH−1J)|Ker(H)).

If the right side of (19) is odd number, then kr ≥ 1 and hence we have instability.

4 Main Results.
We are interested in the spectral stability of periodic standing waves for the system (1). We

apply the theory developed in [1] for the stability of quadratic operator pencils. We review and
state main results regarding the spectral theory of Hill operators arising in the linearization around
corresponding standing waves. First, we establish the spectral stability of periodic standing wave
solutions (ϕ,0).

Theorem 2. Let 0 < β < 1. The dnoidal solution (ϕ,0), where ϕ described in (8), is scpectrally
stable for |w|>

√
1

1+M(κ) , and unstable for |w|<
√

1
1+M(κ) where

M(κ) :=
(2−κ2)[E2(κ)− (1−κ2)K2(κ)]

(2−κ2)E2(κ)−2(1−κ2)E(κ)K(κ)
.

For 1 < β < 3 and |w|>
√

1
1+M(κ) , the solution are unstable.

We now give a different formulation of the main result. Let T >
√

2π . Then, the waves
described in (8) are one parameter family of waves, having a fundamental period 2T , which can

be parametrized by w : |w| <
√

1− 2π2

T 2 , (note that w,κ are in one-to-one relation given by (10)).
Now, Theorem 2 asserts that the stable waves in this family are exactly those with |w| ≥wT , where

wT ∈
(

0,
√

1− 2π2

T 2

)
is determined as follows. Let κT be the unique solution of

(
1− K(κ)(2−κ2)

T 2

)
(1+M(κ)) = T

Then, wT =
√

1
1+M(κT )

.

Proof of Theorem 2. First, we will verify that the pencil given by (J,H ) (or equivalently
the eigenvalue problem (17)) satisfy the requirements 1-3 of Theorem 1. The compactness of the

†Note that this is well-defined since J : Ker(H)→ Ker(H)⊥ and hence JH−1J is well-defined.
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operators in (18) follows from the compactness of the embeddings H2[−L,L] ↪→ H1[−L,L] ↪→
L2[−L,L]. We take the operator

S :=


(1+ |∂x|)3/4 0 0 0

0 (1+ |∂x|)3/4 0 0
0 0 (1+ |∂x|)3/4 0
0 0 0 (1+ |∂x|)3/4

 .

Clearly XS =H3/4[−L,L]×H3/4[−L,L]×H3/4[−L,L]×H3/4[−L,L] is dense in L2×L2×L2×L2.
In addition, S−1JS−1 is smoothing of order 1/2, S−1 smoothing of order 3/2, whereas S(H +
λ )−1S,λ >> 1 is smoothing of order 1/2. Thus, all the operators in question are compact in their
action on L2×L2×L2×L2.

Next, we will consider the spectral properties of the operator of linearization. Note that in
this case the operator of linearization H is in the form

H =


Q1 0 0 0
0 Q2 0 0
0 0 Q3 0
0 0 0 Q2

 ,

where
Q1 =−∂ 2

x +σ −3ϕ2

Q2 =−∂ 2
x +σ −βϕ2

Q3 =−∂ 2
x +σ −ϕ2.

These operators are self-adjoint acting on L2
per[0,2T ] with domain H2

per[0,2T ]. From the
Floquet theory, it follows that its spectrum is purely discrete

ν0 < ν1 ≤ ν2 < ν3 ≤ ν4 < .. .

where ν0 is always a simple eigenvalue. If φn(x) is the eigenfunction corresponding to νn, then

φ0 has no zeroes in [0,2T ];
φ2n+1, φ2n+2 have each just 2n+2 zeroes in [0,2T ).

Using (8) and (9), and taking y = αx as an independent variable in Q1, one obtains Q1 = α2Λ1
with an operator Λ1 in [0,2K(k)] given by

Λ1 =−
d2

dy2 +6k2sn2(y;k)−4−κ
2,

where we have used the relation dn2(x;κ)+κ2sn2(x,κ) = 1. The operator Λ1 is Hill’s operator
with Lamé potential. It is well-known that the first five eigenvalues of Λ2 = −∂ 2

y + 6k2sn2(y,k),
with periodic boundary conditions on [0,4K(k)] are simple. These eigenvalues and corresponding
eigenfunctions are:

ν0 = 2+2k2−2
√

1− k2 + k4, φ0(y) = 1− (1+ k2−
√

1− k2 + k4)sn2(y,k),
ν1 = 1+ k2, φ1(y) = cn(y,k)dn(y,k) = sn′(y,k),
ν2 = 1+4k2, φ2(y) = sn(y,k)dn(y,k) =−cn′(y,k),
ν3 = 4+ k2, φ3(y) = sn(y,k)cn(y,k) =−k−2dn′(y,k),

ν4 = 2+2k2 +2
√

1− k2 + k4, φ4(y) = 1− (1+ k2 +
√

1− k2 + k4)sn2(y,k).
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Since the eigenvalues of Q1 and Λ1 are related by λn = α2νn, it follows that the first three
eigenvalues of the operator Q1, equipped with periodic boundary condition on [0,2K(k)] are simple
and λ0 < 0,λ1 = 0,λ2 > 0. The corresponding eigenfunctions are φ0(αx),φ1(αx) = const.ϕ ′ and
φ2(αx).

From (11), we have Q3ϕ = 0 and since ϕ > 0 it follows that zero is the first eigenvalue of
operator Q3, which is simple.

First we consider the case 0 < β < 1. We have Q2 > Q3, and therefore operator Q2 is strong
positive and KerQ2 = {∅}.

Hence, n(H ) = 1, dimKerH = 2, and ~ψ0 =
1
||ϕ||(0,0,ϕ,0), ~ψ1 =

1
||ϕ ′||(ϕ

′,0,0,0)∈KerH .
The anti-selfadjointness of J yields 〈Jψi,ψi〉= 0, i= 1,2. By direct computations 〈Jψi,ψ j〉=

0, i, j = 1,2. With this, we have verified that J : Ker(H )→ Ker(H )⊥. Thus, in order to de-
termine the stability one needs to compute the index n((Id − JH −1J)|Ker(H )). For the (Id −
JH −1J)|Ker(H ) we have the following matrix representation

U :=
(
〈(Id− JH −1J)~ψ0,ψ0〉 〈(Id− JH −1J)~ψ0,ψ1〉
〈(Id− JH −1J)~ψ1,ψ0〉 〈(Id− JH −1J)~ψ1,ψ1〉

)
We have

H −1J ~ψ0 =
1
||ϕ||


−2wQ−1

1 ϕ

0
0
0

 , H −1J ~ψ1 =
1
||ϕ ′||


0
0

Q−1
3 ϕ ′

0

 .

Thus

U =

(
1+ 4w2

||ϕ||2 〈Q
−1
1 ϕ,ϕ〉 0

0 1+ 4w2

||ϕ ′||2 〈Q
−1
3 ϕ ′,ϕ ′〉

)
.

Since the operator Q3 is non-negative, then 〈Q−1
3 ϕ ′,ϕ ′〉 ≥ 0.

Hence, the stability criteria is as follows
- Stability, if 1+ 4w2

||ϕ||2 〈Q
−1
1 ϕ,ϕ〉 < 0 (one negative and positive eigenvalues of U , n((Id−

JH −1J)|Ker(H )) = 1)

-Instability, if 1+ 4w2

||ϕ||2 〈Q
−1
1 ϕ,ϕ〉> 0 (two positive eigenvalues of U , n((Id−JH −1J)|Ker(H ))=

0)
Thus it remains to compute 〈Q−1

1 ϕ,ϕ〉. We have Q1ϕ ′ = 0. The function

ψ(x) = ϕ
′(x)

∫ x 1
ϕ ′2(s)

ds,
∣∣∣∣ ϕ ′ ψ

ϕ ′′ ψ ′

∣∣∣∣= 1

is also solution of Q1ψ = 0. Formally, since ϕ ′ has zeros using the identities

1
cn2(y,κ)

=
1

dn(y,κ)
∂

∂y

sn(x,κ)
cn(y,κ)

,
1

sn2(y,κ)
=− 1

dn(y,κ)
∂

∂y

cn(x,κ)
sn(y,κ)

and integrating by parts we get

ψ(x) =
1

α2κ2ϕ0

[
1−2sn2(αx,κ)

dn(αx,κ)
−ακ

2sn(αx,κ)cn(αx,κ)
∫ x

0

1−2sn2(αs,κ)
dn2(αs,κ)

ds
]
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Thus, we may construct Green function

Q−1
1 f = ϕ

′
∫ x

0
ψ(s) f (s)ds−ψ(s)

∫ x

0
ϕ
′(s) f (s)s+C f ψ(x),

where C f is chosen such that Q−1
1 f is periodic with same period as ϕ(x).

After integrating by parts, we get

(21) 〈Q−1
1 ϕ,ϕ〉=−〈ϕ3,ψ〉+ ϕ2(T )+ϕ(0)2

2
〈ϕ,ψ〉+Cϕ〈ϕ,ψ〉,

We have

(22)

〈ϕ,ψ〉= 1
α3κ2 [E(κ)−K(κ)]

〈ϕ3,ψ〉= ϕ2
0

2α3κ2 [(2−κ2)E(κ)−2(1−κ2)K(κ)]

Cϕ =− ϕ ′′(T )
2ψ ′(T )〈ϕ,ψ〉+

ϕ2(T )−ϕ2(0)
2 .

With this finally we get

〈Q−1
1 ϕ,ϕ〉=

ϕ2
0

2α3κ2
E2(κ)− (1−κ2)K2(κ)

2(1−κ2)K(κ)− (2−κ2)E(κ)
< 0.

We have

||ϕ||2 =
∫ T

0
ϕ

2
0 dn2(αx,κ)dx =

2ϕ2
0

α

∫ K(κ)

0
dn2(y,κ)dy =

2ϕ2
0

α
E(κ)

Hence

(23) 1+
4w2

||ϕ||2
〈Q−1

1 ϕ,ϕ〉= 1− w2

1−w2
(2−κ2)[E2(κ)− (1−κ2)K2(κ)]

(2−κ2)E2(κ)−2(1−κ2)E(κ)K(κ)
.

Thus, the standing waves are stable if |w|> 1√
(1+M(κ)

and unstable if |w|< 1√
(1+M(κ)

.

Now if 1< β < 3, then Q1 <Q2 <Q3. From Comparison Theorem, n(Q2) = 1 and KerQ2 =
{ /0}. Hence, n(H ) = 2 and for |w|< 1√

(1+M(κ)
, n(H )−n(U) = 1. 2

Now we will consider the spectral stability of periodic standing waves of the form (ϕ,ϕ),
where ϕ is given by (13). We have the following result.

Theorem 3. Let β > 1. The two parameter family of dnoidal solutions (ϕ,ϕ), where ϕ described
in (13), are spectrally stable if |w|>

√
1

1+M(κ) , and unstable if |w|<
√

1
1+M(κ) , where

M(κ) :=
(2−κ2)[E2(κ)− (1−κ2)K2(κ)]

(2−κ2)E2(κ)−2(1−κ2)E(κ)K(κ)
.

For 0 < β < 1 and |w|>
√

1
1+M(κ) , the solutions (ϕ,ϕ) are unstable.
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Proof. Similarly as in the Theorem 2, we have that the pencil given by (J,H ) satisfy the
requirements 1-3 of Theorem 1.

Note that in the case ϕ = ψ the operator H can be diagonalized. Let

B =


1 1 0 0
−1

2
1
2 0 0

0 0 1 1
0 0 0 1

 .

Then

HD = BH B−1 =


L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L3

 ,

where
L1 =−∂ 2

x +σ −3(β +1)ϕ2

L2 =−∂ 2
x +σ − (3−β )ϕ2

L3 =−∂ 2
x +σ − (β +1)ϕ2.

Next, we list the spectral properties of the operator H and HD. Since HD is a diagonal operator,
with entries Li, i = 1,2,3, we have that σ(HD) = σ(L1)∪σ(L2)∪σ(L3). The operators Li, i =
1,2,3 are clearly Hill operators, so that the standard Floquet theory is applicable to them.

Using that κ2sn2(y)+dn2(y) = 1 and formulas (14), we obtain

L1 =−∂ 2
x +σ −3(β +1)ϕ2

0 dn2(αx,κ)

= α2 [−∂ 2
y +6κ2sn2(y,κ)− (4+κ2)

]
,

where y = αx.
It follows that the first three eigenvalues of the operator L1, equipped with periodic boundary

condition on [0,2K(k)] are simple.
From (11), we have that L3ϕ = 0 and since ϕ > 0, then zero is the first eigenvalue, which is

simple with corresponding eigenfunction ϕ . Moreover, L2 = L3 + 2(β − 1)ϕ2 and for β > 1, the
operator L2 is strong positive and KerL2 = { /0}.

Hence, n(H ) = 1, dimKerH = 3, and Ψ0 =
1√

2||ϕ ′||(ϕ
′,ϕ ′,0,0),Ψ1 =

1
||ϕ||(0,0,ϕ,0),Ψ2 =

1
||ϕ||(0,0,0,ϕ) ∈ KerH .

The anti-selfadjointness of J yields 〈Jψi,ψi〉= 0, i = 1,2. Moreover, by direct computations
〈Jψi,ψ j〉= 0, i, j = 1,2. With this, we have verified that J : Ker(H )→ Ker(H )⊥.

No we will estimate the index n((Id− JH −1J)|Ker(H)). For the (Id− JH −1J)|Ker(H) we
have the following matrix representation

U :=

〈(Id− JH −1J)Ψ0,Ψ0〉 〈(Id− JH −1J)Ψ0,Ψ1〉 〈(Id− JH −1J)Ψ0,Ψ2〉
〈(Id− JH −1J)Ψ1,Ψ0〉 〈(Id− JH −1J)Ψ1,Ψ1〉 〈(Id− JH −1J)Ψ1,Ψ2〉
〈(Id− JH −1J)Ψ2,Ψ0〉 〈(Id− JH −1J)Ψ2,Ψ1〉 〈(Id− JH −1J)Ψ2,Ψ2〉


We have

H −1JΨ0 =

√
2w
||ϕ||


0
0

L−1
3 ϕ ′

L−1
3 ϕ ′


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H −1JΨ1 =−
w
||ϕ ′||


L−1

1 ϕ +L−1
2 ϕ

L−1
1 ϕ−L−1

2 ϕ

0
0

 ,

H −1JΨ2 =−
w
||ϕ||


L−1

1 ϕ−L−1
2 ϕ

L−1
1 ϕ +L−1

2 ϕ

0
0

 .

Thus

U =

1+C 0 0
0 1+A+B A−B
0 A−B 1+A+B

 ,

where

A =
2w2

||ϕ||2
〈L−1

1 ϕ,ϕ〉, B =
2w2

||ϕ||2
〈L−1

2 ϕ,ϕ〉, C =
2w2

||ϕ ′||2
〈L−1

3 ϕ
′,ϕ ′〉

The eigenvalues of the matrix U are ρ1 = 1+ 2A, ρ2 = 1+ 2B, ρ3 = 1+C. Since, L2 is non-
negative and L3 is strong positive, then ρ2 = 1+ 2B = 1+ 4w2

||ϕ||2 〈L
−1
2 ϕ,ϕ〉 > 0 and ρ3 = 1+C =

1+ 2w2

||ϕ ′||2 〈L
−1
3 ϕ ′,ϕ ′〉> 0.

Hence, the stability criteria is as follows
- Stability, if 1+ 2A = 1+ 4w2

||ϕ||2 〈L
−1
1 ϕ,ϕ〉 < 0 (one negative and tow positives eigenvalues

of U , n((Id− JH −1J)|Ker(H )) = 1)

-Instability, if 1+ 2A = 1+ 4w2

||ϕ||2 〈L
−1
1 ϕ,ϕ〉 > 0 (three positive eigenvalues of U , n((Id−

JH −1J)|Ker(H )) = 0)
Similarly as in the previous case, we get

ρ1 = 1− w2

1−w2
(2−κ2)E2(κ)− (1−κ2)(2−κ2)K2(κ)

(2−κ2)E2(κ)−2(1−κ2)E(κ)K(κ)
.

Thus, the standing waves are stable if |w|>
√

1
1+M(κ) and unstable if |w|<

√
1

1+M(κ) .

Now if 0 < β < 1, then L1 < L2 < L3. From the Comparison Theorem, we have n(L2) = 1
and KerL2 = { /0}, and n(H )−n(U) = 1. 2
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