ЕДНО НЕРАВЕНСТВО ЗА АБЕЛЕВ ИНТЕГРАЛ

Ана Д. Михайлова

INEQUALITY INVOLVING A CERTAIN ABELIAN INTEGRAL

ANA D. MIHAYLOVA

ABSTRACT: In the present paper we prove that the value of a certain Abelian integral in one of its singular points is not zero. The behavior of this integral is quite important in the investigation of the infinitesimal 16-th Hilbert problem (the problem for limit cycles) for a Hamiltonian of cubic type with two centers and two saddle points.

KEYWORDS: limit cycles, zeros of Abelian integrals

1. Увод. Формулировка на основния резултат.

Нека H(x,y) е кубичният полином с реални коефициенти:

(1.1)
$$H(x,y) = \frac{x^2 + y^2}{2} + Ax^3 + Bx^2y + Cxy^2 \quad , \quad (x,y) \in \mathbf{R}^2 \quad .$$

Ще го наричаме Хамилтониан. Нека $\Sigma \subset \mathbb{R}$ е множеството от реални числа, за които съществува затворена ограничена компонента $\delta(h)$ на линията на ниво $\Gamma_h = \{H(x,y) = h\}$, неминаваща през критични точки. Нека f(x,y), g(x,y) са два реални полинома от степен ненадвишаваща n. Дефинираме пълния Абелев интеграл

$$I(h) = \int_{\delta(h)} [g(x,y)dx - f(x,y)dy]$$
, $h \in \Sigma$.

Инфинитезималният Хилбертов проблем изисква да се намери оценка отгоре Z(3,n) за броя на нулите на Абелевия интеграл I(h) за $h \in \Sigma$ зависеща само от степените на полиномите H(x,y), f(x,y), g(x,y).

Ние предполагаме, че Хамилтонианите от (1.1) удовлетворяват следните две предположения:

• (А1) Съответната непертурбирана Хамилтонова система

$$\begin{aligned}
\dot{x} &= H_y ; \\
\dot{y} &= -H_x .
\end{aligned}$$

Разработката е частично финансирана от Договор ДДВУ 02/91/2010г. с ФНИ и от Договор за научна работа РД-08-237/2014г. с Шуменския университет "Еп. К. Преславски".

притежава четири критични точки, като две от тях са седлови точки, а другите две са центрове.

 \bullet (A2) Съответните критични стойности на H(x,y) са различни помежду си.

Забележка 1.1. От предположението (**A2**) следва, че $BC \neq 0$. Освен това, можем да приемем, че $B^2 - 4AC < 0$. Ако $B^2 - 4AC = 0$, H(x,y) няма да притежава четири различни критични точки.

Известно е, че Хамилтоновите функции H(x,y), които притежават свойствата (A1) и (A2), образуват отворено подмножество в пространството на всички реални кубични Хамилтониани.

От [5], [2] знаем, че за критичните стойности h_1 , h_2 , h_3 , h_4 на H, при направените предположения, са валидни следните неравенства:

$$0 = h_1 < h_2 < h_3 < h_4$$

Критичните стойности h_1 и h_4 отговарят на двата центъра, а критичните стойности h_2 и h_3 - на двете седлови точки. За тези Хамилтониани, също така, е в сила: $\Sigma = (h_1, h_2) \cup (h_3, h_4)$ (Σ - максималният интервал на съществуване на непрекъсната фамилия от овали на $\{H(x,y) = h\}$, неминаващи през критични точки).

Нека означим изчезващия цикъл в точката h_j с $\gamma_j(h)$, j=1,2,3,4. Ясно е, че $\delta(h)\equiv \gamma_1(h)$ за $h\in (h_1,h_2)$ и $\delta(h)\equiv \gamma_4(h)$ за $h\in (h_3,h_4)$.

Извършваме последователно следните смени на променливите:

$$(1.3) z = y(1 + 2Cx) + Bx^2 ;$$

(1.4)
$$\begin{cases} x \to mx + n & , \\ m = \frac{\sqrt{D}}{8AC - 2B^2}, & n = -\frac{A+C}{8AC - 2B^2}, \\ D = (A-C)^2 + 2(A^2 + B^2 + C^2) & ; \end{cases}$$

(1.5)
$$z \to \frac{D}{\sqrt{8|B^2 - 4AC|^3}} z$$
 .

Тези смени привеждат Γ_h в нормалната форма:

(1.6)
$$\Gamma_h = \left\{ \pm \frac{1}{2} z^2 = \frac{x^4}{4} - \frac{x^2}{2} + \alpha x + \beta \right\} ,$$

където

$$\alpha = \frac{2\sqrt{D}\left[(A+C)((A-C)^2 + B^2) - 4Ch(B^2 - 4AC)^2\right]}{D^2} ,$$

$$\beta = \frac{32(B^2 + C^2 - 3AC)(B^2 - 4AC)^2h - (3A^2 - 10AC + 4B^2 + 3C^2)(A+C)^2}{4D^2}$$

Знакът в (1.6) съвпада със знака на $B^2 - 4AC$. Извършвайки линейна смяна на h:

(1.7)
$$h \to -\frac{D^{\frac{3}{2}}}{8C(B^2 - 4AC)^2}h \quad ,$$

получаваме, че $\alpha = h + \alpha_1$ and $\beta = \beta_1 h + \beta_2$.

Смените (1.3), (1.4), (1.5), (1.7) и нормалната форма (1.6) са заимствувани от [2].

Нека означим образите на I(h), $\gamma_j(h)$, (j=1,2,3,4), след горните смени на променливите съответно с $\widetilde{I}(h)$, $\widetilde{\gamma}_j(h)$, j=1,2,3,4. Нека въведем числата μ , ν , ρ , които ще използуваме многократно като степени на полиноми:

(1.8)
$$\mu = \left\lceil \frac{n-2}{3} \right\rceil \; ; \quad \nu = \left\lceil \frac{n-3}{3} \right\rceil \; ; \quad \rho = \left\lceil \frac{n-1}{3} \right\rceil \; .$$

за всяко $n \in \mathbb{N}$.

В сила е следната лема ([3]):

Лема 1.2. За $\widetilde{I}(h)$ са в сила следните декомпозиции:

(1.9)
$$\widetilde{I}(h) = \widetilde{u}_{\mu}(h) \int_{\widetilde{\gamma}_{1}(h)} z dx + \widetilde{v}_{\mu}(h) \int_{\widetilde{\gamma}_{1}(h)} \frac{z dx}{(x+\beta_{1})^{2}} + \widetilde{w}_{\nu}(h) \int_{\widetilde{\gamma}_{1}(h)} (x+\beta_{1})z dx + \widetilde{s}_{\rho}(h) \int_{\widetilde{\gamma}_{1}(h)} \frac{z dx}{x+\beta_{1}} , 3a \quad h \in (h_{1}, h_{2});$$

$$\widetilde{I}(h) = \widetilde{u}_{\mu}(h) \int_{\widetilde{\gamma}_{4}(h)} z dx + \widetilde{v}_{\mu}(h) \int_{\widetilde{\gamma}_{4}(h)} \frac{z dx}{(x+\beta_{1})^{2}} + \widetilde{w}_{\nu}(h) \int_{\widetilde{\gamma}_{4}(h)} (x+\beta_{1})z dx + \widetilde{s}_{\rho}(h) \int_{\widetilde{\gamma}_{4}(h)} \frac{z dx}{x+\beta_{1}} , 3a \quad h \in (h_{3}, h_{4});$$

където $\widetilde{u}_{\mu}(h)$, $\widetilde{v}_{\mu}(h)$, $\widetilde{w}_{\nu}(h)$, $\widetilde{s}_{\rho}(h)$ са полиноми на h от степени: $\deg \widetilde{u}_{\mu}(h) = \deg \widetilde{v}_{\mu}(h) = \mu$; $\deg \widetilde{w}_{\nu}(h) = \nu$; $\deg \widetilde{s}_{\rho}(h) = \rho$. Тези полиноми са едни и същи и както когато $h \in (h_1, h_2)$, така и когато $h \in (h_3, h_4)$. (Ако степента е отрицателна, съответният полином се взема да бъде тъждествено равен на нула).

До края на настоящата работа ще използуваме диференциалните едно - форми ω_j , j=0,1,2,3, дефинирани с равенствата:

(1.10)
$$\begin{cases} \omega_0 = \frac{dx}{z} ; & \omega_1 = \frac{x+\beta_1}{z} dx ; \\ \omega_2 = \frac{dx}{z(x+\beta_1)} ; & \omega_3 = \frac{(x+\beta_1)^2}{z} dx \end{cases}.$$

Тези 1- форми възникват по следния начин:

(1.11)
$$\begin{bmatrix} \int_{\widetilde{\gamma}_{j}} \frac{z}{(x+\beta_{1})} dx \end{bmatrix}' = \int_{\widetilde{\gamma}_{j}} \omega_{0} ; \qquad \begin{bmatrix} \int_{\widetilde{\gamma}_{j}} z dx \end{bmatrix}' = \int_{\widetilde{\gamma}_{j}} \omega_{1} ; \\ \int_{\widetilde{\gamma}_{j}} \frac{z}{(x+\beta_{1})^{2}} dx \end{bmatrix}' = \int_{\widetilde{\gamma}_{j}} \omega_{2} ; \qquad \begin{bmatrix} \int_{\widetilde{\gamma}_{j}} (x+\beta_{1}) z dx \end{bmatrix}' = \int_{\widetilde{\gamma}_{j}} \omega_{3} .$$

В статията [7] е доказано, че $\left(\int\limits_{\widetilde{\gamma}_1}\omega_0\right)\bigg|_{h=h_1} \neq 0$

Основният резултат от настоящата работа е следната теорема:

Теорема 1.3. В сила е следното неравенство:

$$(1.12) \left(\int_{\widetilde{\gamma}_4} \omega_0 \right) \bigg|_{h=h_4} \neq 0 .$$

2. Доказателство на теорема 1.3.

Разглеждаме Хамилтониана, който се получава след смените: (1.3), (1.4), (1.5), (1.7) Да го означим с $\widetilde{H}(x,z)$. За да опростим записа, ще бележим с $P_4(x)$ следния полином: $P_4(x) = \frac{x^4}{4} - \frac{x^2}{2} + \alpha_1 x + \beta_2$. Разглеждаме линиите на ниво на $\widetilde{H}(x,z)$:

$$\widetilde{H}(x,z) = -\frac{1}{2} \left(\frac{z^2}{x+\beta_1} \right) - \frac{P_4(x)}{x+\beta_1} = h , \ h \in \mathbf{R}.$$

Да означим с $(x_1,0)$, $(x_2,0)$, $(x_3,0)$, $(x_4,0)$ четирите критични точки на $\widetilde{H}(x,z)$. Съответните им критични стойности са $0=h_1< h_2< h_3< h_4$. Числата $x_1,\ x_2,\ x_3,\ x_4$ съвпадат с четирите реални и различни корена на уравнението:

$$(2.1) P_4'(x)(x+\beta_1) - P_4(x) = 0.$$

Освен това, в точката $(x_j, 0)$ е изпълнено:

(2.2)
$$\widetilde{H}(x_j,0) - h_j = -\frac{P_4(x_j)}{x_j + \beta_1} - h_j = 0,$$

тоест,

(2.3)
$$P_4(x_j) + h_j(x_j + \beta_1) = 0.$$

Ще докажем, че $x=x_j$ е двукратен, но не и трикратен корен на последния полином. Наистина, от (2.1) за $x=x_j$ имаме:

$$P_4'(x_j) = \frac{P_4(x_j)}{x_j + \beta_1}.$$

Използувайки това равенство и (2.2), получаваме последователно:

$$[P_4(x) + h_j(x + \beta_1)]'\Big|_{x=x_j} = \left[P'_4(x) + h_j\right]\Big|_{x=x_j} = \frac{P_4(x_j)}{x_j + \beta_1} + h_j = 0.$$

Ще докажем, че $[P_4(x) + h_j(x+\beta_1)]''\Big|_{x=x_j} = P_4''(x_j) = 3x_j^2 - 1 \neq 0$ като използуваме, че особените точки $(x_1,0), (x_4,0)$ са центрове, а особените точки $(x_2,0), (x_3,0)$ са седлови точки на Хамилтоновата система:

$$\left\{ \begin{array}{l} \dot{x} = \widetilde{H}_z \; ; \\ \dot{z} = -\widetilde{H}_x \; . \end{array} \right.$$

Линеаризацията на тази система, отговаряща на критичната точка $(x_j,0)$, има матрица $M(x_j)$, равна на:

$$M(x_j) = \begin{pmatrix} \widetilde{H}_{zx}(x_j, 0) & \widetilde{H}_{zz}(x_j, 0) \\ -\widetilde{H}_{xx}(x_j, 0) & -\widetilde{H}_{xz}(x_j, 0) \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{x_j + \beta_1} \\ \frac{P_4''(x_j)}{x_j + \beta_1} & 0 \end{pmatrix}.$$

Собствените числа $\lambda_1(x_j)$, $\lambda_2(x_j)$ на $M(x_j)$ са корени на квадратното уравнение $\lambda^2 = -\frac{P_4''(x_j)}{(x_j+\beta_1)^2}$. Обаче, знаем, че когато особената точка е център, тогава $\lambda_1(x_j)$ и $\lambda_2(x_j)$ са чисто имагинерни числа, тоест, $P_4''(x_j)>0$ за j=1 и за j=4. Когато особената точка

е седлова, тогава $\lambda_1(x_j)$ и $\lambda_2(x_j)$ са реални и $\lambda_1(x_j)\lambda_2(x_j)<0$. Следователно, $P_4^{''}(x_j)<0$ за j=2 и за j=3.

Забележка 2.1. Критичната точка, отговаряща на първия център преди смените (1.3), (1.4), (1.5), (1.7), е (0,0). Следователно, $x_1 = -\frac{n}{m} = \frac{(A+C)}{D^{\frac{1}{2}}}$. Тоест, можем да пресметнем явно, че

(2.4)
$$P_4''(x_1) = 3x_1^2 - 1 = -\frac{2(B^2 - 4AC)}{D} > 0.$$

За пълнота ще пресметнем и $x_1 + \beta_1$:

(2.5)
$$x_1 + \beta_1 = \frac{A+C}{D^{\frac{1}{2}}} - \frac{(B^2 + C^2 - 3AC)}{CD^{\frac{1}{2}}} = -\frac{B^2 - 4AC}{CD^{\frac{1}{2}}} .$$

От направените разсъждения следва, че за всяко j=1,2,3,4, можем да запишем уравненията на линиите на ниво на $\widetilde{H}(x,z)$ по следния начин:

(2.6)
$$\widetilde{H}(x,z) - h_j = -\frac{1}{2} \left(\frac{z^2}{x+\beta_1} \right) - \frac{P_4(x) + h_j(x+\beta_1)}{x+\beta_1} = -\frac{1}{2} \left(\frac{z^2}{x+\beta_1} \right) - \frac{(x-x_j)^2 Q_j(x)}{x+\beta_1} = h - h_j ,$$

където $Q_j(x)$ са полиноми на x от втора степен. За тях е изпълнено $Q_j(x_j) \neq 0$. В частност, за $j=1,\ Q_1(x)$ може да се пресметне явно и за него се получава: $Q_1(x)=\frac{x^2}{4}+\frac{A+C}{2D^{\frac{1}{2}}}x+\frac{3}{4}\frac{(A+C)^2}{D}-\frac{1}{2}$.

• Ще докажем неравенството (1.12). Линията на ниво $\{\widetilde{H}(x,z)=h\}$ притежава реална компактна затворена компонента (овал) за $h \in (h_3,h_4)$. Въпросният овал е реален представител на $\widetilde{\gamma}_4$ - изчезващия цикъл в точката $h=h_4$.

Нека $h \in (h_3, h_4)$. Вместо (2.6) разглеждаме:

(2.7)
$$\frac{1}{2} \left(\frac{z^2}{x + \beta_1} \right) + \frac{(x - x_4)^2 Q_4(x)}{x + \beta_1} = h_4 - h.$$

Реален овал съществува, когато са изпълнени условията:

$$\begin{vmatrix} x + \beta_1 > 0 ; \\ Q_4(x) > 0 . \end{vmatrix}$$

Нека тези условия са налице. Тогава в (2.7) правим следната смяна на променливите:

$$\begin{cases} z \frac{1}{\sqrt{2}\sqrt{x+\beta_1}} = u; \\ (x - x_4)\sqrt{\frac{Q_4(x)}{x+\beta_1}} = v \end{cases}$$

В новите променливи (2.7) приема вида: $u^2 + v^2 = h_4 - h$.

От втората връзка между старите и новите променливи ще изразим x като неявна функция на v в околност на точката с координати $x=x_4, v=0$. За целта разглеждаме помощната функция $\Theta(x,v)=(x-x_4)\sqrt{\frac{Q_4(x)}{x+\beta_1}}-v$. За нея е изпълнено:

$$\begin{cases} \Theta(x_4, 0) = 0; \\ \Theta_x(x_4, 0) = \sqrt{\frac{Q_4(x_4)}{x_4 + \beta_1}} \neq 0. \end{cases}$$

От теоремата за неявните функции следва, че в околност на точката $(x=x_4,v=0)$, можем да изразим от уравнението $\Theta(x,v)=0$, x, и то по единствен начин, като неявна функция x=x(v) на v. При това, получената неявна функция е аналитична в околност на $(x=x_4,v=0)$. Ще пресметнем първите два члена от развитието на x(v) в ред на Тейлър в околност на v=0. От дефиницията на $\Theta(x,v)$ веднага се вижда, че $x(0)=x_4$. Да пресметнем x'(0). Диференцираме спрямо v тъждеството:

$$(x(v) - x_4)\sqrt{\frac{Q_4(x(v))}{x(v) + \beta_1}} - v \equiv 0.$$

Получаваме:

$$x'(v)\sqrt{\frac{Q_4(x(v))}{x(v)+\beta_1}} + (x(v)-x_4)\left(\sqrt{\frac{Q_4(x(v))}{x(v)+\beta_1}}\right)' \equiv 1.$$

Заместваме в това тъждество v с 0 и изразяваме x'(0). Получава се $x'(0) = \sqrt{\frac{x_4+\beta_1}{Q_4(x_4)}} \neq 0$. Следователно, x(v) има следното развитие в околност на v=0 :

$$x(v) = x_4 + \sqrt{\frac{x_4 + \beta_1}{Q_4(x_4)}}v + O(v^2)$$
.

От тук веднага следва, че

$$dx(v) = \left(\sqrt{\frac{x_4 + \beta_1}{Q_4(x_4)}} + O(v)\right) dv$$
.

Като заместим x(v) с полученото развитие във връзката между z и u, намираме:

$$z = \sqrt{2u}\sqrt{x_4 + \sqrt{\frac{x_4 + \beta_1}{Q_4(x_4)}v + O(v^2) + \beta_1}}.$$

Правим нова смяна на променливите:

$$\begin{cases} u = \sqrt{h_4 - h} \cos \varphi ; \\ v = \sqrt{h_4 - h} \sin \varphi . \end{cases}$$

Веднага пресмятаме $dv=\sqrt{h_4-h}\cos\varphi d\varphi$. Преминаваме към пресмятането на $\int\limits_{\widetilde{\gamma}_4}\omega_0$. Получаваме последователно:

$$\int_{\widetilde{\gamma}_4} \omega_0 = \int_{\widetilde{\gamma}_4} \frac{dx}{z} = \int_{u^2 + v^2 = h_4 - h} \frac{\left(\sqrt{\frac{x_4 + \beta_1}{Q_4(x_4)}} + O(v)\right) dv}{\sqrt{2}u\sqrt{x_4 + \sqrt{\frac{x_4 + \beta_1}{Q_4(x_4)}}v + O(v^2) + \beta_1}} =$$

$$= \int_{0}^{2\pi} \frac{\left(\sqrt{\frac{x_{4}+\beta_{1}}{Q_{4}(x_{4})}} + O(\sqrt{h_{4}-h}\sin\varphi)\right)\sqrt{h_{4}-h}\cos\varphi d\varphi}{\sqrt{2}\sqrt{h_{4}-h}\cos\varphi\sqrt{x_{4}+\sqrt{\frac{x_{4}+\beta_{1}}{Q_{4}(x_{4})}}\sqrt{h_{4}-h}\sin\varphi} + O((\sqrt{h_{4}-h}\sin\varphi)^{2}) + \beta_{1}}$$

$$\stackrel{h \to h_{4}}{\longrightarrow} = \sqrt{\frac{x_{4}+\beta_{1}}{Q_{4}(x_{4})}} \frac{1}{\sqrt{2}\sqrt{x_{4}+\beta_{1}}} \int_{0}^{2\pi} d\varphi = \sqrt{2}\pi\sqrt{\frac{1}{Q_{4}(x_{4})}} \neq 0.$$

С това неравенството (2.1) е доказано.

3. Благодарности.

Авторката изказва своята благодарност към член - кор. проф. дмн Емил Хорозов от Софийския университет "Св. Кл. Охридски"за постановката на задачата и за оказаната помощ при нейното решаване.

Литература

- V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps. Vol II. Monodromy and Asymptotics of Integrals, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988.
- [2] L. Gavrilov and E. Horozov, Limit cycles of perturbations of quadratic Hamiltonian vector fields, J. Math. Pures Appl. (9) 72 (1993), No 2, 213 - 238.
- [3] E. Horozov and I. D. Iliev, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, *Nonlinearity* 11 (1998), 1521 1537.
- [4] E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, *Proc. Lond. Math. Soc.* **69** (1994) No 1, 198 224.
- [5] E. Horozov and I. D. Iliev, Perturbations of quadratic Hamiltonian systems with symmetry, Annales de l'I. H. P., Section C, tome 13, No 1 (1996), 198 224.
- [6] E. Horozov and A. Mihajlova, An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians, Nonlinearity 23 (2010), 3053 - 3069.
- [7] А. Михайлова, Върху един Абелев интеграл, *MATTEX 2012 Сборник научни трудове*, том 1 (2012), 108 114 .