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ABSTRACT: In this paper we consider an arbitrary finite p-
group with a commutator subgroup G' of order p, where p is a prime.
We define the concepts: a minimal group, a central commutator prod-
uct, a symplectic pair, a symplectic product, a symplectic basis, a key
group, a clean group etc. In the article there are two main results: the
structural theorem for the considered groups and the determination of
the full system of invariants of these groups.
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1. Introduction. Let G be a finite p-group with a commutator
subgroup G’ of order p, where p is a prime. Then G is called a finite
p-group with a minimal commutator subgroup. We shall suppose, that
G’ =< ¢ >, i.e. we shall fix the generating element ¢ of G'.

In the section "Preliminary results" we define the concepts: a
group of the central type and a group of the non-central type, a min-
imal group, a central commutator product, a clean group.

In the third part of this paper we study the structure of finite
p-groups with a minimal commutator subgroups. We introduce the
concept "a symplectic basis" and define its properties. We give defini-
tions for a key subgroup, a symplectic pair and a symplectic product.
We construct a symplectic linear space.

In the latter part of the article we determine a full system of in-
variants of the finite p-group G with a minimal commutator subgroup.

Glauberman [5,6] has studied finite p-groups, but his attention
is directed to various properties of such groups. Akinola [1] obtain
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properties of some subgroups of finite p-groups. Finite p-groups are
studied in [2, 3,4, 8].

2. Preliminary results
Definition 2.1. Let G be an arbitrary multiplicative group and
z,y € G. Then the element

[z, y] =27y ey € G
is called a commutator of the elements x and y in the group G.
The subgroup

G' = [z, yllz,y € G)

of G, which is generated by all commutators of G, is called a commu-
tator subgroup of G.

Definition 2.2. Let the order of the commutator subgroup G’ of
Gbepandlet G =<c>, P =1, c# 1. Then G is called a finite
p-group with a minimal commutator subgroup.

Theorem 2.3. If the order of G’ is p, then G’ is contained in the
center Z of G .

Proof. Let G’ =< ¢ >. We must prove, that ¢ commutes with
all elements of the group G. Denote by [ = [c,a], where a € G is an
arbitrary element of G. Then ¢ 'a='ca = I , hence a~'ca = cl. We
substitute I = ¢ and obtain a;lca = ¢#*1 k € N and by an induction,
we obtain a P ca®® = ¢* D" Therefore, (k+1)”" = 1(modp) and
k = 0(modp), i.e. I = 1. O

Theorem 2.4. If ¢ and b are arbitrary elements of the group G
and G’ =< ¢ >, then

(ab)™ = anbr e ,n e N.

Proof. Let ¢ = [b,a]. Then ba = abc . We will prove this theorem
by an induction.

1. Forn =1, ab = ab holds.
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2. Suppose, that the theorem is true for n — 1, i.e. (ab)"~! =

a~ 1bn 1 7@ D(n=2)

3. We will prove the theorem for n . Namely,
(n—1)(n—2)
(ab)™ = (ab)"L(ab) = a" 10" e 2 ab=
(n—=1)(n—2) nin n(nfl)
=a 2 a™bc 2
since a 'ba = be implies a 10" ta = v '¢" ! and then " la =
abn—lcn—l‘

Let either p # 2 or p = 2 and n # 2. Then, if either p divides n
or p divides n — 1, then (ab)™ = a"b". O

nflbnflabc —

i

Corollary 2.5. If either p # 2 or p = 2 and n > 2, then
(ab)pTL — ap7L bp'"/
Proof. We have proved (ab)" = b"cn(n;l)

n ("1 p"(p" 1)

If p # 2, then (ab)?" = a?"b""c 2 . However ¢ 2 =1
and consequently (ab)P" = aP"bP".

If p=2and n > 2, then w is even and ¢ =t _ 1.

If p=2, [b,a] = cand n =1, then (ab)? = a?b’c . O
def

Definition 2.6. G[p {a € G/a" =1}.

Definition 2.7. G*" < {a"" Ja € G} .

Theorem 2.8. If either p # 2 or p =2 and n > 2, then G[p"] is
a subgroup of G.

Theorem 2.9. If either p # 2 or p = 2 and n > 2, then G?" is
a subgroup of G.

Proof. Let a,b € GP". Then a = 2?", b = y*" , z,y € G. By
Corollary 2.5, ab = zP"y?" = (zy)?" € GP". O

Lemma 2.10. The group G?" is an Abelian group.
Proof. It holds a?"*" = (ab)?" . Then b a?" = (ba)’" =
(abc)P" = (ab)P" = a?"bP",1 € Z. O
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Lemma 2.11.[7](Theorem 9.2.1. p. 138) The factor group G/G’
is Abelian. If K is a normal subgroup of G , such that G/K is Abelian,
then K D G'.

Definition 2.12. Let G be a finite p-group with a commutator
subgroup G’ of order p and let ¢ be a generating element of G’. If the
equation 27" = ¢ has a solution in G and the equation 2P = ¢ does
not have solution in G, then the number p* is called a height of ¢ in
the group G and it is denoted by hg(c). If this equation is considered
in the center Z of the group G , then this number is called o height
of ¢ in Z and it is denoted by hz(c) .

If hy(c) = p¥, then either hg(c) = p* or hg(c) = pFt! .

Definition 2.13. If hz(c) = hg(c) , then the group G is called
a group of a central type. If hg(c) = p.hz(c) , then we will call the
group G a group of o non-central type .

Definition 2.14. Let G be a finite p-group with a commutator
subgroup of order p. The group G is called a minimal group if each
its real subgroup is Abelian.

Lemma 2.15. The group G is a minimal group, if and only if
G is generated by two non-commutative elements.

Proof.

1. Necessary: Let G be a minimal group. Since G is non-abelian,
then G consists of a pair of non-commutative elements a and b . By
Definition 2.14, G = < a,b >.

2. Sufficiency: Let G be generated by two non-commutative el-
ements a and b, [b,a] = ¢, where G’ =< ¢ >. Let H be a non-
commutative subgroup of G . Then H consists of a pair of non-
commutative elements = and y and z = a®bP¢?, y = a*b*c”, where
a,B,7, A\ u,v € Z. Let us define the commutator of z and y. Con-
sider [z,y] = [a®b%cY, a*bHe’] = [a®, b].[b%, 0] = [a,b]**[b,a]?* =
cPA=ar £ 1 Therefore, p does not divide S\ — au. Then exists
§ € Z, such that 6(ap — B\) = 1(modpt), where o(a) = p'. From the
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above representations of z and y we obtain z#y~# = a®*~BAc" | Then
(zty=P)0 = acn®. Since x,y,c € H, then a € H. Analogously, we
prove, that b € H . Therefore, H = G. 0

We will pay attention to the following p-groups with a commutator
subgroup of order p:

First type: G =< a,b >: a?" = prﬁ = 1,a "ba = be,ac =
ca,bc=cb,a>1,>1,

Second type: G =< a,b>: a?* = 1,0"" = 1,a tba = b1+7" ",
a>1,822,

Third type: Qs.

Lemma 2.16. Each minimal group is isomorphic to the one of
those three types groups.

Proof. We must first prove, that these three types groups are
minimal groups. Really, each of them is generated by two non-
commutative elements.

Further we will prove, that each minimal group is isomorphic to
any of these three types groups. We consider the factor group G/G’ .
Since G is generated by two elements and G/G’ is an Abelian group,
then this factor group is a direct product of two cyclic groups. Let a
and b be representatives of the forming elements of the cosets of G’
of these cyclic groups. Since the group G is non-commutative, then
a and b are non-commutative. Let [b,a] = ¢, where ¢ is the forming
element of G'. Then a?” = ¢® and b’ = ¢#1. We can choose the
elements a and b so that oy and 57 take values 0 or 1. We will consider
three cases:

First case: ap = 31 = 0, a?” = prﬁ = 1,a 'ba = bc and since
c is a central element, then ac = ca, bc = cb. Therefore, the group is
isomorphic to a group of the first type.

Second case: a1 = 0 and 1 = 1, a?” = prﬁ = c¢,a 'ba = be.
Then we have a group of second type (analogously for a; = 1 and
f1=0).

Third case: a; = 1, o = ¢, W = ¢,a”'ba = be. We have two
subcases:
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31. Ifp* =pP =2, then p =2, @« = f = 1. So we obtain the

group Qs.
3.2. Let at least one of the numbers p® and p? be different from 2.

- _a\P%
We can assume that o < 8. Then 1 = a? WP g (ab‘pﬁ ) . We

put z = ab=P""". Then 27" = 1, w = ¢, 7 1bx = be and we obtain
a group of the second type. O

Remark. The group Dg may be considered as a group of the first
or the second type. Really,

<a,b>:a®>=1,b0>=1,a"ba = bc - first type;

<zuy>22=1y" =12 yr =y3: 2 = a,y = ab - second
type.

Definition 2.17. Let G1,Ga, ..., GE be subgroups of the group
G, which satisfy the following conditions:

1. if x; € Gy, y; € Gy, then x;y; = y;x; , for i # j ;

2.G/(ZNG) =T, G:i(ZnGN)(ZNG) ;

3. G=G1Gs...Gy, .
Then G is called a central commutator product of the subgroups
G1,Go, ..., Gy and we shall denote it by

G = Gl * G2 X ook Gk = H?:l *Gz

Definition 2.18. Let G be a finite p-group with a commutator
subgroup of order p . The group G is called a clean group, if it does
not contain cyclic direct factors.

Remark. Each minimal group is a clean group.

Lemma 2.19. Each finite p-group with a commutator subgroup
of order p is a direct product of a clean subgroup and an Abelian
group.

Proof. Let us denote by A the maximal Abelian direct factor of
G . Then G = U x A. We will prove, that U is a clean group. Assume
that U consists of a cyclic direct factor, i.e. U = Uy x Uy, where Us
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is a cyclic group. Then G = Uy x Uy x A = U; x (U x A). Since
U x A is a product of Abelian groups, it is an Abelian group, it is a
direct factor and consists of A, then we obtain a contradiction to the
fact, that A is a maximal group. Therefore, U is a clean group. [

Lemma 2.20. Let A and B be minimal groups. Then A x B =
Cx D , where C' and D are minimal groups and at least one of them
is of the first type.

Proof. If at least one of the groups A and B is of the first type,
then Lemma 2.20 is obvious. It remains to consider three cases:

1. Let A and B be of the second type. Then

A=<ai,ay >: a’fal = l,agar1 =c=[ag,a1),a1 > 1,9 > 2;

B=<byby> 0" = 1,087 =c=[by,by],p1 > 1,6 > 2.

We can assume that ag > Py . Let us put

v { ar, ag > o,
arbi, az =P
y = aga2762 b2
Then we put C =< z,a2 > and D =< by,y > . Therefore, C' and D
are minimal groups, D is of the first type and Ax B=Cx D .
2. Let p =2, A be of the second type and B = Qg . Then
A=<ay,ay > a? = 1,a%’8—1 =c,a>1,8>2;
B =<by,by>: b3 =1,b3=c.
The preparation of the groups C' and D is analogously to the first

case.

3. Let A= B = Qg . Then

A=<ayay > a}=d}=c,

B =< bl,bz > b% Zb% = C.
We put © = a1b1, y = asbs and define the groups C and D by the
following way:

C=<uz,a0> D=<y,by >.
Then C and D are isomorphic to Dg and Ax B=Cx D . O
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Lemma 2.21. Let G be a clean p-group with a commutator sub-
group of order p. Then G can be represented as a central commutator
product of minimal groups and eventually one cyclic group.

Proof. We will prove Lemma 2.21 by an induction to the order
of the group G.

Let G be of a minimal order. Then it is isomorphic to any of
minimal groups

Let G be of an arbitrary non-minimal order. Consider the factor
group G/G’ . Tt is an Abelian. Let a be a non-central element of G,
such that aG’ has the lowest order to the orders of the all cosets of
G’ , which have to representative a non-central element of G . Let b
be an element, which does not commute with a, i.e. [b,a] = ¢, such
that o(bG") < o(yG') , y € G, y ¢ Z(G) , by these elements, which
do not commute with a . We form a minimal group by the elements
a and b and denote it by H =< a,b >. Consider Cg(a) N Cg(b).
Then Z(H) < Cg(a) N Cq(b) , since all elements of Z(H) commute
with a and b together . The forming element ¢ of the commutator
subgroup is contained in Z(H), since H is non-commutative. There-
fore, it is contained in Cg(a) NC(G(b) . Then we can form the factor
groups Z(H)/G" and (Cg(a) N Cg(b))/G’, which satisfy the condition
Z(H)/G" < Cala)NCq(b))/G" . We will prove, that Z(H)/G' is a
direct factor of other factor group. We must prove that Z(H)/G" is
servant subgroup of Cg(a) NCq(b) . Since H is generated by a and b,
then Z(H)/G' =< a?G’ > x< VPG’ > . We denote by o(aG’) = p°,
ie. a?” € G and o(bG") =p? | i.e. w €G!, where a < 8 .

Each element of the substratum of Z(H)/G' is of the type G’ =
a " T GY N, € Z and at least one of the numbers A and p is
not divisible by p . We consider two cases:

First case: When A is not divisible by p , i.e. (A\,p) =1 . Then
hz(H)/G/(a?G/) = poz—2. We must prove that hCG(a)ﬂC(G(b))/G’ ($G/) =
p®~2. We assume that there exists an element yG' € Cg(a) N Cq(b))/G,
such that (yG')P*"" = " 'p#" '@’ Therefore,

a—1

o— a— - —a\P
G = o T G and (ya‘Ab_“pB ) € G'. The element
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ya~ b7 is of order p** and then o(ya b G) < pL .
On the one hand p®~! < p® and the element a is of a minimal order of
the non-central elements and o(a) = p*. On the other hand the ele-
ment ya~*b~*?""* is a non-central element, since y € Ca(a) N Cg(b)
and a and b do not commute. Then we obtain a contradiction with
the selection of the element a, which is of a minimal order.

Second case: Let p divide A. Since a?* € G, then ™" € G'.
We consider the coset 2G’ = b**" "' G’ . Assume, that there exists the
element zG' € Cg(a) N Cx(b)/G', such that (zG’)pB*1 S el
Then (zlf“)pﬁi1 € G’ and hence o(zb™#) < pP~1. Since p?~1 < pP,
then we obtain a contradiction with the selection of the element b.

We have Cg(a) NCq(b)/G = Z(H)/G' x T/G' , where T <
Cei(a) N Cg(b))/G'. Therefore, C(a) N Ci(b)) = Z(H).T and Z(H)N
T = G' =< ¢ > . On the other hand G = H.(Cg(a) N Cg(b)). Then
G = H.Z(H).T = H.T. Let us define the intersection of H and 7. We
have < ¢ >=Z(H)NT < HNT and hence < ¢ >< HNT. We must
prove that H NT < < ¢ >. Let us take an element z € H. Therefore,
r = a®b’. Let x € T. Then  commutes with a and b. If (a,p) = 1,
then a® does not commute with b, since a and b do not commute.
On the other hand the element b° commutes with b . Then z does
not commute with b. But z must commute with a and b. Therefore,
o must divide of p. Analogously, we obtain that # must divide of p.
The elements of the type a of degree, which is divided of p and b of
degree, which is divided of p. belong to Z(H). Then « € Z(H) and
since x € T, then x € Z(H)NT =< ¢ > . Therefore, G = H.T and
HNT =< ¢ > .Hence G = Hx*T. Since T is of lower order of G. Then
T is a central commutator product of minimal groups. Since H is a
minimal group, then G is a central commutator product of minimal
groups. O

3. Structure of finite p-groups with a minimal commuta-
tor subgroups

Lemma 3.1. Each clean finite p—group G with a commutator
subgroup of order p can be represented as G = W x B, where W is
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a cyclic p-group or a minimal group of the second or the third type
and B is a central commutator product of minimal groups of the first
type.

Proof. By Lemma 2.21, G can be represented as a central com-
mutator product of minimal groups and eventually one cyclic group.
If we take one pair of minimal groups of this central commutator prod-
uct, then according to Lemma 2.20, this pair can be taken with other
pair, where at least one of the groups is of the first type. Then in the
central commutator product by successive replacements the minimal
subgroups of the second and the third type can be reduced and will
remain at most one such group.

If the group G is of a central type, then in the central commutator
product after successive transformations will do not remain a group
of the second or the third type. It will remain only one cyclic group.

If the group G is of a non-central type, then it will remain one
group of the second or the third type. Let us denote the cyclic group
or the group of the second or the third type by W. The central commu-
tator product of other minimal groups denote by B . Then G = WxB.
O

Theorem 3.2.(structural theorem for the finite p-groups
with a commutator subgroup of order p). Each finite p-group
G with a commutator subgroup of order p can be represented by the
following way: G = W B x A, where the group W is a cyclic p-group
or a minimal group of the second or the third type, B is a central
commutator product of minimal subgroups of the first type and A is
an Abelian group.

Proof. By Lemma 2.21, the group G can be represented as G =
U x A, where A is an Abelian group and U is a clean group. Lemma
3.1 implies the group U can be represented as U = W x B , where W
is a cyclic group, or a minimal group of the second or the third type
and the group B is a central commutator product of minimal groups
of the first type. Therefore, G=W * B x A . O

Definition 3.3. Let G be a finite p-group with a commutator
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subgroup G’ of order p and let ¢ be the forming element of G’. Let
G can be represented as G = W x B x A , where W, B and A are
the subgroups of Theorem 3.2. We will call the forming elements
of the system of the forming elements of the minimal groups, which
participate in the presentation of G as a central commutator product
a symplectic basis of G.

Let aq,ao, ..., as, b1, be, ...bs, 1, Ca, ..., ¢, be the elements, which form
a symplectic basis of the group G. Then they hold the following prop-
erties:

1) fori € {1,2,...,s} it holds: a; 'b;a; = b;c, and all other elements
of A commute together ;

2) if G is of a central type, then the cyclic group < ¢; > contains
G’ and the cyclic subgroups, which are generated by other generating
elements do not contain G’. If the group G is of a non-central type
and either p # 2 or hg(c) > 4, then the cyclic group < by > contains
G’ and the other cyclic subgroups, which are generated by A, do
not contain G’. If the group G is of a non-central type, p = 2 and
ha(c) = 2, then < by > contains G' and at most one of the subgroups
< a;,b; > is isomorphic to the quaternion group of order eight.

3) Any element of the group G is represented uniquely as a product

S S T /6

H H H ai\%\bﬂuczu

A=1p=1v=1
where the exponents oy, 8., 7, take values from 0 to the order of the
corresponding coset in the factor group G/G’, with the exception of
the element ¢ for a group of central type and the element b; for a
group of a non-central type. In this case the exponents take values
from 0 to the order of ¢; (to the order of by, respectively).

Theorem 3.4. If G = G1 x Go * ... x G, then each element
of G is represented in the form g = g1¢s...9x, Where g; € G; for i €
{1,2,...,k} and if the element g has other presentation g = g} dj...g}.,
then ¢} = gici , c; € G', g € G;.
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Proof. Let ¢ € G . According to condition 3 we obtain g =
g192...g%. Furthermore, let g = ¢ g5...g, for g; € Gi, i € {1,2,..., k}.
Then glg; ' = 9197 9295 ' 9(-1)9 (1) 914 1)9 (i 1)~k - Conse-
quently, glgit € Gin Hf¢j7j:1Gj = @'. Then there is ¢; € G’, such
that g, = gic;. O

Definition 3.5. We will call the group W from the presentation
of G in Theorem 3.2 a key subgroup of the group G.

Theorem 3.6. Let G be a finite p-group with a commutator
subgroup of order p . If the key subgroup of G is isomorphic to the
quaternion group (g, then G can be represented as a product of two
groups A and B , which are normal subgroups of G and ANB = G'. If
the key subgroup is not isomorphic to QJg, then G can be represented
as a semi-direct product of two Abelian groups.

Proof. We have proved, that G has a symplectic basis and
its non-central elements can be separated into pairs. We form two
Abelian groups A and B by the following way: we take one of the
elements from each pair of one symplectic basis of the group G and
we generate the group A by these elements . We generate the group B
by taking the other element of the corresponding pair, as well as the
central basis elements and G’ . So we obtain: A =< a1, a9,...,as >
and B =< by, bo,...,bs,c1,Co, ..., G’ >, where ¢y, co,...,c. are the
central basis elements. Since B D G’ , then B is a normal subgroup
of G. Let ¢ € G. Then g = a1°1...as®b P bPoey e, € AB .
Therefore, G = AB.

We shall consider the following two cases:

1. Let in the basis one pair generate the quaternion group of order
eight and let this pair be a1,b; and p = 2. Then AN B consists of the
commutator subgroup and it is generated by a? = b? . Let g € AN B.
Then g = a1™...a,® € Aand g = b7 ..b, e eVt e B, t e G
Hence,

(3.1) a1 ..as®by P by e T e T = 1
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Let Qs =< aj,b; > . In (3.1.) the element t~! can be included in the
element bl_ﬂ ' since the elements, which participate in (3.1), are from
a symplectic basis of G. Then all factors, except for a; and by, will be
equal to the unit and this equation will be reduced to af*b;"' =1 .
However the obtained equation is an equation in (Jg and it is possible
only when o7 and (; are even numbers. Therefore, AN B coincides
with G'.

2. In the symplectic basis of the group G there is not a pair, which
generates (Jg. Then we consider again the equation (3.1). In this case
< a; > N< b; > = 1, where a; and b; form a pair in the basis and
then in (3.1) each factor will be equal to the unit. Hence AN B =1
and therefore, in this case the group G is a semi-direct product of A
and B. O

Lemma 3.7. Let G be a finite p-group and let G’ have an order
p. Suppose, that G is represented according to Theorem 3.6. Then
|A/Z N Al = p%, |B/Z N B| = p® and |G/Z| = p**, where Z is the
center of the group G.

Proof. Consider two cases:

1. Let G be a semi-direct product of the subgroups A and B.
Then |G| = |A|.|B|, since AN B = 1. Furthermore

Z=(ZNA)(ZnB).

Therefore,
Z|=1znAl|lzn B,
G| Al B Al |B|
G Z = — = = =
G/2 |Z]  |ZNnA||ZnB| |ZnA||ZnNB|
= |A/(Zn A)||B/(ZN B)|.
However

A=<ay,a9,...,a5s >, B =<by,bo,....bs,C1,Coy ., Cr > .
-31-
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Since each element of degree p commutes with all elements of GG, then
we have AP C Z. We consider the factor group A/(Z N A). Since
(a;i(ZNA)P =ad(ZNA)=ZnNA, then A/(ZNA) is an elementary
Abelian group. Therefore, the generating elements have an order p.
Hence the whole group is an elementary Abelian group of order p*
and the elements ai, as, ..., as form its basis. Then |A/(Z N A)| = p®.
Analogously, |B/(Z N B)| = p* . Then |G/Z| = p*p® = p*.
2. Let G = A.B. Then

_ 1AlBl _ [AllB| _ |A[[B| _ |AllB] _ 1

G| = = = = —|A||B|;
Gl = anE = o = = 2 = 3l
1
2= 51z 4|z B|
Gl [AllB]
GlZ|= 5 =— 15—
IG/Z] |Z]  |ZNA||ZnN B
and analogously to the first case we obtain that |G/Z| = p?*. O

Definition 3.8. We will say, that the elements a,b € G form a
symplectic pair | if the following conditions are hold:

1) [b7 a] =6

2) the element a has a minimal order in the coset aCg(b) and

3) the element b has a minimal order in the coset bCq(a) .

Definition 3.9. If a¢ and b form a symplectic pair, the order of
a is p* and the order of b is p’, then the pair (a,b) is called a pair of
the type (i,7). The number of the symplectic pairs of the type (3, )
we will denote by d;5, i,j € {1,2,..., k}.

It is not hard to see, that the factor group G/Z is an elementary
Abelian p-group. Therefore, it can be considered as a linear space over
the field GF(p) of p-elements. The operations in this linear space are
determined by

(3.2.) aZ +bZ =% abz,
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(3.3.) Maz) =%l a* 7.
We shall prove, that the operations of (3.2) and (3.3) are correct.

In fact a1 Z = aZ implies a1 = az1 and b1 Z = bZ implies by = bzs,
21,29 € Z. Then

arZ +0Z =" a1 Z = abZ =" aZ + b7
and
Ma12) =% 0t Z = (az)N? = 0?20 Z = a*Z =% \a2).
Let a,b € G. Since [a,b] € G' =< ¢ >, then [a,b] = ¢*, a € GF(p).
Then we denote by a = log.[a, b].

Definition 3.10. In the obtained linear space G/Z over the field
GF(p) we introduce a symplectic product (aZ,bZ), where aZ,bZ €
G/Z by the following way: (aZ,bZ) = log.[a, b).

We shall prove, that the Definition 3.10 is correct. In fact a1 Z =
aZ implies a1 = az, and b1 Z = bZ implies by = bz, 21,29 € Z. Let
(aZ,bZ) = log.[a,b] and (a1Z,b01Z) = log.|a1, b1]. Then

(a1Z,01Z) = logclar, bi] = logclazy, bze] =
= log.([a, b][a, z2][21, b][21, 22]) = logc|a,b] = (aZ,bZ).

Lemma 3.11. The symplectic product (z,y) € GF(p) has the
following properties:

1) (z,y) = —(y,2);
2) ('T1+x27 ) ($17y)+<x27y);
3) (z, 31 +y2) (z,91) + (7, 92);
4) (z,x) =
5)()\1* y) = )\(l‘ y) and
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6) (z,Ay) = Az, y)
for z,y,x1,29,y1,y2 € G/Z, N € Z .
Proof. Weput z =aZ, y =bZ,x1 = a1Z,x9 = asZ . Suppose,
that A\, A1, A2 € GF(p).
1) Let (aZ,bZ) = a, i.e. [a,b] = c®*. Then [b,a] = ¢, i.e.
(aZ,bZ) = —(bZ,aZ).
2) Let (a1Z,b7) = log.la1,b], (a2Z,bZ) = log.[az,b]. Then
(z1 + 22,y) = (1 Z + a2 Z,bZ) =% (a1a22,b7) =
= log.[a1az, b] = log.[a1,b][a2,b] =
= (21,y) + (z2,9) = (1 Z,bZ) + (a2 Z,bZ) =
logc{alﬁ b] + logc[a% b] = logc([ab b} [a2a b])
3) The proof is analogously to 2).
4) (z,z) = (aZ,aZ) = log.|a,a] = log.1 =0 .
5) ()\:1: y) = (NaZ,b2) = (a*Z,bZ) = log.[a,b] = logc|a,b] =
Aogcla,b] = Az, y).
6) The proof is analogously to 5). O

Definition 3.12. A linear space, where a symplectic product is
determined , is called a symplectic space.

4. Invariants of finite p-groups with a minimal commuta-
tor subgroups

We introduce the following indications:

Gij = G[p'] N Ca(GlP ),
i.e. Gy; consists of all elements of the group G, whose orders are less
than or equal to p’ and which commute with all elements of order less
than or equal to p/ 1.

Lemma 4.1. Ifi; <iorj <ji,then G, C Gyj, 4,141,551 € N
Proof. The inequality 7; < i implies G[p*t] C G[p?]. Then j —1 <
ji — 1 implies Ca(Gp' 1)) € Ca(Gp'™")) and Gy, € Gij. O

Let ¢ < j and let the number of the symplectic pairs of the type
(i,7) in one fixed basis of G be s . Let these pairs be (z1,y1), (x2,¥2), ...,
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(s,ys). We form the group H = (x1,x9,...,Zs), where xj, are of or-
der p’ and y; are of order p’, for 4,5,k € {1,2,...,s}. The group H
is an Abelian group, since if we take two different symplectic pairs,
then each element of one pair will commute with each element of
the other pair. These elements form a basis, since they are from
the basis of G. The group H decomposes into the direct product
H=<21>X<x9>X..X<xg>.

Lemma 4.2. Let ¢ < j . Then Gi]’ = HGi_leij+1, 1,7 € N.

Proof. The definitions for G;; = G[p'] N Ce(G[p’~1]) and

H =<1z > X <xy > X..X < zg >imply H C (. Hence, by
lemma 4.1, we obtain HG;_1,;Gij+1 C Gjj.

Let x € G;;. Denote by G; the subgroup of G, which is generated
by all non-central basis elements of G of order p’. This subgroup can
be represented as G; = H.F.T, where F is generated by the basis
elements of G;, which commute with the elements of G[p!] and T
is generated by the remaining basis elements of G;. We can see at
once that F' C Gjjy1. It holds x € G;; C G[p']. Therefore, x = x12/,
where z € G[p'~!], 2/ € G;. Then 2’ = xow374, where 2o € H,
x3 € F, v4 € T. Then x = x1xow324. Since x2 € h C G;; and
r3 € F C Gij+1 - Gz], then zoxg € GU Hence, in view of x €
Gj it follows x1x4 € Gij. Let x4 = 7152137 c®, where t1,ta, ..., 1)
are the generating elements of T'. Let (t1,t)), (t2,15), ,, (tg, t}.) be the
corresponding symplectic pairs of the basis of G. The definitions of the
groups H, F and T imply t) € G[p~!] for € {1,2,...,k}. Then x124
commutes with ¢; for I € {1,2,...,k}. Since ¢; commutes with all basis
elements of G except t;, then g is divided by p for [ € {1,2,...,k}.
Consequently, the element x4 has an order less than or equal to p'~!.
Besides |z1| < p'~!. Hence 2124 € G[p'~!]. Then z124 € G;; implies
T1T4 € Gi—lj and Gz‘j C HGz’—leij+1-

Note, that in the reasoning x = x1x9x324 the factor x4 can move
to the second place, since G;j41 is a normal subgroup of G' and x4
commutes with xs.

We shall also note, that all reflections in the proof of this lemma
are led for ¢ > 2 . If ¢ = 1 these reflections are still in force assuming
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that G;_1; = 1. The lemma is proved. O

Theorem 4.3.[7](Theorem 4.7.2. p. 112) If H is a subgroup of G
and K is a normal subgroup of G, then H N K is a normal subgroup
of Hand HK/K ¥ H/(HNK).

Consider HGz’—leij+1/Gz’—1sz’j+1- Then, by Lemma 3.6 and The-
orem 3.7,

Gij/Gi-1jGij+1 = HG;i—1jGij11/Gi—1jGij1 = H/(H N Gi—1;Gij41)-

Lemma 4.4. If i < j, then HNG;—1;Gij4+1 = HP, 4,5 € N.

Proof. We have HP C H. Besides HP C Z. Hence
HP? C C(G[p’~Y]). The elements of H are of order, less than or equal
to pi. Therefore, HP C G[pi_l], H? C Giflj - Gifleij#l and HP C
HnN Gi—leij—I—l‘

We have to prove the converse, namely H N G;_1;G;j41 € HP.
Let x € HNGi-1;G;j41 be an arbitrary element. Then x € H and
therefore, x = z{*25?...2$s. We have to prove, that each exponent «;
is divided by p. Namely then x will belong to HP. We have x = yz,
where y € G;_1; and z € G;j41. Consequently, 27! z5?...2%° = yz. We
choose an arbitrary factor zy*. Our aim is to show that a4 is divided
by p . The element z; is from the basis of G and participates in
the symplectic pair (x¢, 1) of the type (¢,7). Since z € Gjj41, then
z € C(G[p’]), the order of y; is p/ and yrz = zy;. Besides y € Gy_1;
implies y € G[p*~!]. Hence y is expressed by the elements of the
basis, which are of order less than or equal to p*~! and the order of
(7;) is p'. Therefore, z; can not participate in the presentation of y
by elements of the basis. Then y; will commute with y, since y; does
not commute only with z; . Consequently, , yy; = yry. On the other
hand y; commutes with y and with z. Hence 3 commutes with yz
and z{'z5?..2%* = yz implies y commutes with z{'z5?...23*. But
y: commutes with all factors except x; and if oy is not divided by p,
then y; does not commute with x7*. Therefore, oy is divided by p.
Since a; was selected arbitrary, then all exponents are divided by p
and x € HP. O
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Theorem 4.5. Let ¢ < j . Then Gj;/Gi—1;Gij+1 = H/HP,
1,7 € N.

Proof. By application of Lemma 4.2, Theorem 4.3 and Lemma
4.4 we obtain

Gij/Gi-1jGijr1 = HGi-1;Gij41/Gim1Gijp1 =

= H/(H N Gi—leij+1) = H/HP
O

It is obvious, that ¢; = D77, d;;, where d; is the i—th Ulm-
Kaplansky invariant of G/G’. Then §; is an invariant of G. Therefore,
it can be proved, that §;; are invariants of the group G.

Lemma 4.6. If the key subgroup is not cyclic, then it is a minimal
group of the second or the third type and its forming elements form
a symplectic pair.

Proof. Let the key subgroup be of the second type. Then a?” =
1,177’”871 = ¢ . We have to prove, that the element a has the lowest
order in the coset aCq(b) and the element b has the lowest order
in the coset bCg(a) . The key subgroup is one of the factors in
the decomposition in a central commutator product. Then we can
determine Cg(a) and Cg(b) . Since G = K T and K is the key
subgroup, we consider Cg(a) =< a > X< b > x T, . Therefore,
T C Cqg(a) and T C Cg(b) .

Let us consider the elements of bCg(a) . They are of the type:
a*b' Pt We raise in degree p®~! and then (a>‘b1+“pt)p5 1 #1,1ie.

AP T e T £ 1 We assume, that o7 6P T T = 1.
a Y
Then o' =1, """ =1, #'" = 1. Since o’ =% 1, then
we obtain a contradiction. Analogously, we consider Cg(b) =< a? >
X< b > x T and obtain the same result. O

Theorem 4.7. The key subgroup of the group G is unique up to
isomorphism.
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Proof. We will first consider the case, when G is of the central
type. Then the key subgroup of G is cyclic and its order is phz(c) and
phz(c) = pha(c). Since hz(c) is an invariant of ¢ , then this cyclic
subgroup is defined up to isomorphism.

Let G be a group of a non-central type. Let Wy be the key sub-
group of GG and let the order of G be greater or equal to 16. Let G be
not isomorphic to the following group:

(%) a* =1, = ¢, [b,a] = c.

Then Wi will generate by the elements a; and b; , so that
afal = 1,1)’11#71 =c,[b1,a1] = c.
In this case the elements a1 and b; form a symplectic pair.
Let p~1 # 2 and let W5 be other key subgroup of G . Then it is

generated by the elements as and by. Here the condition bg[#l =cis
hold, since hg(c) = p®~! and this height is an invariant of G . In this
case the group Wy has an order greater or equal to 16. Furthermore
Wy is not cyclic, since the group G is of a non-central type. Therefore,
Wy is of the type:

aga2 = 1,b§ﬁ71 = ¢, [bg,a2] = c.

A1 51 g1 g1

The equations ¥y =cand b) ~ =cimply b =05 . Since
pP~1 > 2, then the last equation implies (blbz_l)’pﬂf1 = 1. If the
element by commutes with aq, then b2_1 € Cg(ay). Then b1b2_1 €
b1Cg(a1) . This element has an order p?~! < p® = o(b1) . Since
in the coset b1Cg(a1) the element by has the lowest order , then we
obtain a contradiction with the fact that b1by ! has lower order, since
the elements a; and b; form a symplectic pair. Therefore, by does
not commute with a; , i.e. a3 ¢ Cg(b2). Since each element, which
does not belong to C(b2), has an order, greater or equal to the order
of ag, then o(a1) > o(az). By symmetry proves that o(a2) > o(a1) .
Then o(a1) = o(ag) and a; = ag. Therefore, W; = W, .

Let p?~1 =2 . Then we consider the groups:

Wy a2 = 1,02 = ¢, [b1,a1] = ¢

W :ad™ =1,b3 =c, by, a2] = c.
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First, we will prove, that if 2¢' > 4, then b; and by commute.
Consider Cg(b1) . The index of Cg(by) in the group G is 2 and
the cosets of G by Cg(b1) are Cg(b1) and a;Cq(b1). If by does not
commute with b; , then by € a;Cg(b1) . In this coset each element
has order greater or equal to the order of aj, but o(a;) = 2% and
291 > 4 . This is a contradiction. Therefore, by and by commute.
Then (b1b2)? = b2b3 = c.c = 1 and hence o(b1bs) = 2.

We assume that by does not commute with ay. Then the element
biba € b1Cg(a1) has an order 2 and the minimal order is o(b2) = 4.
Then we obtain a contradiction and a; and b2 do not commute, i.e.
a1 ¢ Cg(b2). All elements, which do not belong to C(b2), have order,
greater or equal to o(az2). Then o(a1) > o(ag). Analogously, o(ag) >
o(ay). Then o(a;) = o(az). Therefore, when p®~1 > 2 or pf~1 = 2
and 2°' > 4, we obtain, that the key subgroup of G is unique. We
will consider the cases, when the key subgroup is isomorphic to the
group (%), or to Dg, or to Qs.

Let G be a group, which has a key subgroup and this key subgroup
is isomorphic to one of the three above-mentioned groups. Then G
is decomposed as a central commutator product of key subgroup of
selected type and minimal groups of first type and eventually groups
of the type Dg . Consider the subgroup G[4] . We know, that it is an
invariant of G. Consider G[4]/C . We obtain an elementary Abelian
2-group. The number of the direct factors of order 2 in this group
is defined by the number of the minimal groups of the first type, the
groups of the type Dg and the key subgroup. It is proved, that the
number of the minimal groups of the first type is an invariant. Then
the number of the groups of the type Dg and the key subgroup is an
invariant. Hence, we obtain an invariant of the group G. This group
is decomposed as a central commutator product of the selected key
subgroup and groups of the type Dg . We denote the total number
of the factors by n. One of these factors is the key subgroup and the
number of the groups of the type Dg is n—1, wheren € N . We define
the number of the elements of order 2 in this group. It can be verified
by immediate calculations, that the number of the elements of order
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2 in these three cases of groups is:
First case: if W = (x) , then the number of involutions is 4" — 1.
Second case: if W = Qg , then the number of involutions is
4 — 2" — 1.
Third case: if W & Dg , then the number of involutions is
442" — 1.
Therefore, in this case the key subgroup of G is unique up to
isomorphism. O

Lemma 4.8. Let the group G be represented in the form: G =
W« B x A. Then

27 [p]/GP" [p] = AP [p) /AP [p).

Proof. Let GG be represented in the form: G = W x B x A. Then

Z =WP x BP x A.

Hence _ _ _ _
ZP =P BPT AP
Then _ L » _
ZP'[p] = WP [p] x BP [p] x AP'[p]
and i+1 i+1 i+1 i+1
GP " [p) = WP p] x B p] x AP [,
Therefore,

77 pl/GP" p] = A7 [p] /A7 [p]
O
Theorem 4.9. Let G be a finite p-group with a commutator
subgroup of order p. Then the invariants of the key subgroup of G,

the numbers 6; , 0;; for ¢ < j, (¢ < 4, 4,5 € N) and p' {p]/Gpi—O—l i
form a full system of invariants of the group G.
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The following theorem is a main result of the paper and it gives a
criterion for isomorphism of finite p-groups with a commutator sub-
group of order p.

Theorem 4.10. Let G be a finite p-group with a commutator
subgroup of order p and let H be an arbitrary group. Then the groups
G and H are isomorphic if and only if H is a finite p-group with a
commutator subgroup of order p and the following conditions hold:

1) the key subgroups Wg and Wy of the group G and H are
isomorphic;

2) (SW(G) = 5U(H) for i < 73

3) 6;(G) = 0;(H) and

4) |2¢ [p)/ 7" [pl] = 125 o)/ HP [

The proofs of the Theorems 4.9 and 4.10 imply directly of the
assertions, which are proved earlier. O

An announcement of the results of this paper is submitted for
publication in [9].
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