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ABSTRACT: In this paper we consider an arbitrary �nite p-

group with a commutator subgroup G′ of order p, where p is a prime.

We de�ne the concepts: a minimal group, a central commutator prod-

uct, a symplectic pair, a symplectic product, a symplectic basis, a key

group, a clean group etc. In the article there are two main results: the

structural theorem for the considered groups and the determination of

the full system of invariants of these groups.
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1. Introduction. Let G be a �nite p-group with a commutator
subgroup G′ of order p, where p is a prime. Then G is called a �nite

p-group with a minimal commutator subgroup. We shall suppose, that
G′ =< c >, i.e. we shall �x the generating element c of G′.

In the section "Preliminary results" we de�ne the concepts: a
group of the central type and a group of the non-central type, a min-
imal group, a central commutator product, a clean group.

In the third part of this paper we study the structure of �nite
p-groups with a minimal commutator subgroups. We introduce the
concept "a symplectic basis" and de�ne its properties. We give de�ni-
tions for a key subgroup, a symplectic pair and a symplectic product.
We construct a symplectic linear space.

In the latter part of the article we determine a full system of in-
variants of the �nite p-group G with a minimal commutator subgroup.

Glauberman [5, 6] has studied �nite p-groups, but his attention
is directed to various properties of such groups. Akinola [1] obtain
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properties of some subgroups of �nite p-groups. Finite p-groups are
studied in [2, 3, 4, 8].

2. Preliminary results

De�nition 2.1. Let G be an arbitrary multiplicative group and
x, y ∈ G. Then the element

[x, y] = x−1y−1xy ∈ G

is called a commutator of the elements x and y in the group G.
The subgroup

G′ = 〈[x, y]|x, y ∈ G〉

of G, which is generated by all commutators of G, is called a commu-

tator subgroup of G.

De�nition 2.2. Let the order of the commutator subgroup G′ of
G be p and let G′ =< c >, cp = 1, c 6= 1. Then G is called a �nite

p-group with a minimal commutator subgroup.

Theorem 2.3. If the order of G′ is p, then G′ is contained in the
center Z of G .

Proof. Let G′ =< c >. We must prove, that c commutes with
all elements of the group G. Denote by l = [c, a], where a ∈ G is an
arbitrary element of G. Then c−1a−1ca = l , hence a−1ca = cl. We
substitute l = ck and obtain a−1ca = ck+1, k ∈ N and by an induction,

we obtain a−p
α
cacα = c(k+1)p

α

. Therefore, (k + 1)p
α

≡ 1(modp) and
k ≡ 0(modp), i.e. l = 1. �

Theorem 2.4. If a and b are arbitrary elements of the group G
and G′ =< c >, then

(ab)n = anbnc
n(n−1)

2 , n ∈ N.
Proof. Let c = [b, a]. Then ba = abc . We will prove this theorem

by an induction.
1. For n = 1 , ab = ab holds.
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2. Suppose, that the theorem is true for n − 1 , i.e. (ab)n−1 =

an−1bn−1c
(n−1)(n−2)

2 .
3. We will prove the theorem for n . Namely,

(ab)n = (ab)n−1(ab) = an−1bn−1c
(n−1)(n−2)

2 ab =

= an−1bn−1abc
(n−1)(n−2)

2 = anbnc
n(n−1)

2 ,
since a−1ba = bc implies a−1bn−1a = bn−1cn−1 and then bn−1a =
abn−1cn−1.

Let either p 6= 2 or p = 2 and n 6= 2. Then, if either p divides n
or p divides n− 1, then (ab)n = anbn. �

Corollary 2.5. If either p 6= 2 or p = 2 and n ≥ 2, then
(ab)p

n
= ap

n
bp
n
.

Proof. We have proved (ab)n = anbnc
n(n−1)

2 .

If p 6= 2, then (ab)p
n
= ap

n
bp
n
c
pn(pn−1)

2 . However c
pn(pn−1)

2 = 1
and consequently (ab)p

n
= ap

n
bp
n
.

If p = 2 and n ≥ 2, then pn(pn−1)
2 is even and c

pn(pn−1)
2 = 1 .

If p = 2, [b, a] = c and n = 1 , then (ab)2 = a2b2c . �

De�nition 2.6. G[pn]
def
=
{
a ∈ G/apn = 1

}
.

De�nition 2.7. Gp
n def

=
{
ap

n
/a ∈ G

}
.

Theorem 2.8. If either p 6= 2 or p = 2 and n ≥ 2, then G[pn] is
a subgroup of G.

Theorem 2.9. If either p 6= 2 or p = 2 and n ≥ 2, then Gp
n
is

a subgroup of G.
Proof. Let a, b ∈ Gpn . Then a = xp

n
, b = yp

n
, x, y ∈ G. By

Corollary 2.5, ab = xp
n
yp

n
= (xy)p

n ∈ Gpn . �

Lemma 2.10. The group Gp
n
is an Abelian group.

Proof. It holds ap
n
bp
n

= (ab)p
n
. Then bp

n
ap

n
= (ba)p

n
=

(abcl)p
n
= (ab)p

n
= ap

n
bp
n
, l ∈ Z. �
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Lemma 2.11.[7](Theorem 9.2.1. p. 138) The factor group G/G′

is Abelian. IfK is a normal subgroup ofG , such thatG/K is Abelian,
then K ⊇ G′.

De�nition 2.12. Let G be a �nite p-group with a commutator
subgroup G′ of order p and let c be a generating element of G′. If the
equation xp

k
= c has a solution in G and the equation xp

k+1
= c does

not have solution in G, then the number pk is called a height of c in
the group G and it is denoted by hG(c). If this equation is considered
in the center Z of the group G , then this number is called a height

of c in Z and it is denoted by hZ(c) .
If hZ(c) = pk, then either hG(c) = pk or hG(c) = pk+1 .

De�nition 2.13. If hZ(c) = hG(c) , then the group G is called
a group of a central type. If hG(c) = p.hZ(c) , then we will call the
group G a group of a non-central type .

De�nition 2.14. Let G be a �nite p-group with a commutator
subgroup of order p. The group G is called a minimal group if each
its real subgroup is Abelian.

Lemma 2.15. The group G is a minimal group, if and only if
G is generated by two non-commutative elements.

Proof.

1. Necessary: Let G be a minimal group. Since G is non-abelian,
then G consists of a pair of non-commutative elements a and b . By
De�nition 2.14, G = < a, b >.

2. Su�ciency: Let G be generated by two non-commutative el-
ements a and b, [b, a] = c, where G′ =< c >. Let H be a non-
commutative subgroup of G . Then H consists of a pair of non-
commutative elements x and y and x = aαbβcγ , y = aλbµcν , where
α, β, γ, λ, µ, ν ∈ Z. Let us de�ne the commutator of x and y. Con-
sider [x, y] = [aαbβcγ , aλbµcν ] = [aα, bµ].[bβ, aλ] = [a, b]αµ[b, a]βλ =
cβλ−αµ 6= 1 . Therefore, p does not divide βλ− αµ. Then exists
δ ∈ Z, such that δ(αµ− βλ) ≡ 1(modpt), where o(a) = pt. From the
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above representations of x and y we obtain xµy−β = aαµ−βλcγ1 . Then
(xµy−β)δ = acγ1δ. Since x, y, c ∈ H, then a ∈ H. Analogously, we
prove, that b ∈ H . Therefore, H = G. �

We will pay attention to the following p-groups with a commutator
subgroup of order p:

First type: G =< a, b >: ap
α

= 1, bp
β
= 1, a−1ba = bc, ac =

ca, bc = cb, α ≥ 1, β ≥ 1,
Second type: G =< a, b >: ap

α
= 1, bp

β
= 1, a−1ba = b1+p

β−1
,

α ≥ 1, β ≥ 2,
Third type: Q8.

Lemma 2.16. Each minimal group is isomorphic to the one of
those three types groups.

Proof. We must �rst prove, that these three types groups are
minimal groups. Really, each of them is generated by two non-
commutative elements.

Further we will prove, that each minimal group is isomorphic to
any of these three types groups. We consider the factor group G/G′ .
Since G is generated by two elements and G/G′ is an Abelian group,
then this factor group is a direct product of two cyclic groups. Let a
and b be representatives of the forming elements of the cosets of G′

of these cyclic groups. Since the group G is non-commutative, then
a and b are non-commutative. Let [b, a] = c , where c is the forming

element of G′. Then ap
α
= cα1 and bp

β
= cβ1 . We can choose the

elements a and b so that α1 and β1 take values 0 or 1. We will consider
three cases:

First case: α1 = β1 = 0, ap
α
= 1, bp

β
= 1, a−1ba = bc and since

c is a central element, then ac = ca, bc = cb. Therefore, the group is
isomorphic to a group of the �rst type.

Second case: α1 = 0 and β1 = 1, ap
α
= 1, bp

β
= c, a−1ba = bc.

Then we have a group of second type (analogously for α1 = 1 and
β1 = 0 ).

Third case: α1 = β1, a
pα = c, bp

β
= c, a−1ba = bc. We have two

subcases:
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3.1. If pα = pβ = 2 , then p = 2, α = β = 1. So we obtain the
group Q8.

3.2. Let at least one of the numbers pα and pβ be di�erent from 2.

We can assume that α ≤ β . Then 1 = ap
α
bp
−β

=
(
ab−p

β−α
)pα

. We

put x = ab−p
β−α

. Then xp
α
= 1, bp

β
= c, x−1bx = bc and we obtain

a group of the second type. �

Remark. The group D8 may be considered as a group of the �rst
or the second type. Really,

< a, b >: a2 = 1, b2 = 1, a−1ba = bc - �rst type;
< x, y >: x2 = 1, y4 = 1, x−1yx = y3 : x = a, y = ab - second

type.

De�nition 2.17. Let G1, G2, ..., Gk be subgroups of the group
G, which satisfy the following conditions:

1. if xi ∈ Gi, yj ∈ Gj , then xiyj = yjxi , for i 6= j ;

2. G/(Z ∩G′) =
∏k
i=1Gi(Z ∩G′)/(Z ∩G′) ;

3. G = G1G2...Gk .
Then G is called a central commutator product of the subgroups
G1,G2, ..., Gk and we shall denote it by

G = G1 ∗G2 ∗ ... ∗Gk =
∏k
i=1
∗Gi.

De�nition 2.18. Let G be a �nite p-group with a commutator
subgroup of order p . The group G is called a clean group, if it does
not contain cyclic direct factors.

Remark. Each minimal group is a clean group.

Lemma 2.19. Each �nite p-group with a commutator subgroup
of order p is a direct product of a clean subgroup and an Abelian
group.

Proof. Let us denote by A the maximal Abelian direct factor of
G . Then G = U×A.We will prove, that U is a clean group. Assume
that U consists of a cyclic direct factor, i.e. U = U1 × U2, where U2
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is a cyclic group. Then G = U1 × U2 × A = U1 × (U2 ×A) . Since
U2 ×A is a product of Abelian groups, it is an Abelian group, it is a
direct factor and consists of A, then we obtain a contradiction to the
fact, that A is a maximal group. Therefore, U is a clean group. �

Lemma 2.20. Let A and B be minimal groups. Then A ∗ B =
C ∗D , where C and D are minimal groups and at least one of them
is of the �rst type.

Proof. If at least one of the groups A and B is of the �rst type,
then Lemma 2.20 is obvious. It remains to consider three cases:

1. Let A and B be of the second type. Then

A =< a1, a2 >: a
pα1
1 = 1, ap

α2−1

2 = c = [a2, a1], α1 ≥ 1, α2 ≥ 2;

B =< b1, b2 >: b
pβ1
1 = 1, bp

β2−1

2 = c = [b2, b1], β1 ≥ 1, β2 ≥ 2.
We can assume that α2 ≥ β2 . Let us put

x =

{
a1, α2 > β2,
a1b1, α2 = β2

y = ap
α2−β2

2 b2.

Then we put C =< x, a2 > and D =< b1, y > . Therefore, C and D
are minimal groups, D is of the �rst type and A ∗B = C ∗D .

2. Let p = 2 , A be of the second type and B ∼= Q8 . Then
A =< a1, a2 >: a

2α
1 = 1, a2

β−1

2 = c, α ≥ 1, β ≥ 2;
B =< b1, b2 >: b

2
1 = 1, b22 = c.

The preparation of the groups C and D is analogously to the �rst
case.

3. Let A ∼= B ∼= Q8 . Then
A =< a1, a2 >: a

2
1 = a22 = c,

B =< b1, b2 >: b
2
1 = b22 = c.

We put x = a1b1, y = a2b2 and de�ne the groups C and D by the
following way:

C =< x, a2 >, D =< y, b2 > .
Then C and D are isomorphic to D8 and A ∗B = C ∗D . �
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Lemma 2.21. Let G be a clean p-group with a commutator sub-
group of order p . Then G can be represented as a central commutator
product of minimal groups and eventually one cyclic group.

Proof. We will prove Lemma 2.21 by an induction to the order
of the group G.

Let G be of a minimal order. Then it is isomorphic to any of
minimal groups.

Let G be of an arbitrary non-minimal order. Consider the factor
group G/G′ . It is an Abelian. Let a be a non-central element of G,
such that aG′ has the lowest order to the orders of the all cosets of
G′ , which have to representative a non-central element of G . Let b
be an element, which does not commute with a, i.e. [b, a] = c, such
that o(bG′) ≤ o(yG′) , y ∈ G, y /∈ Z(G) , by these elements, which
do not commute with a . We form a minimal group by the elements
a and b and denote it by H =< a, b >. Consider CG(a) ∩ CG(b).
Then Z(H) ≤ CG(a) ∩ CG(b) , since all elements of Z(H) commute
with a and b together . The forming element c of the commutator
subgroup is contained in Z(H), since H is non-commutative. There-
fore, it is contained in CG(a)∩C(G(b) . Then we can form the factor
groups Z(H)/G′ and (CG(a) ∩ CG(b))/G′, which satisfy the condition
Z(H)/G′ ≤ CG(a) ∩ CG(b))/G′ . We will prove, that Z(H)/G′ is a
direct factor of other factor group. We must prove that Z(H)/G′ is
servant subgroup of CG(a)∩CG(b) . Since H is generated by a and b,
then Z(H)/G′ =< apG′ > ×< bpG′ > . We denote by o(aG′) = pα,

i.e. ap
α ∈ G′ and o(bG′) = pβ , i.e. bp

β ∈ G′ , where α ≤ β .
Each element of the substratum of Z(H)/G′ is of the type xG′ =

aλp
α−1

bµp
β−1

G′, λ, µ ∈ Z and at least one of the numbers λ and µ is
not divisible by p . We consider two cases:

First case: When λ is not divisible by p , i.e. (λ, p) = 1 . Then
hZ(H)/G′(xG

′) = pα−2. We must prove that hCG(a)∩C(G(b))/G′(xG
′) =

pα−2.We assume that there exists an element yG′ ∈ CG(a) ∩ CG(b))/G′,
such that (yG′)p

α−1
= aλp

α−1
bµp

β−1
G′. Therefore,

yp
α−1

G′ = aλp
α−1

bµp
β−1

G′ and
(
ya−λb−µp

β−α
)pα−1

∈ G′. The element
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ya−λb−µp
β−α

is of order pα−1 and then o(ya−λb−µp
β−α

G′) ≤ pα−1 .
On the one hand pα−1 < pα and the element a is of a minimal order of
the non-central elements and o(a) = pα. On the other hand the ele-

ment ya−λb−µp
β−α

is a non-central element, since y ∈ CG(a) ∩ CG(b)
and a and b do not commute. Then we obtain a contradiction with
the selection of the element a, which is of a minimal order.

Second case: Let p divide λ. Since ap
α ∈ G′, then aλpα−1 ∈ G′.

We consider the coset xG′ = bµp
β−1

G′ . Assume, that there exists the

element zG′ ∈ CG(a) ∩ CG(b)/G′, such that (zG′)p
β−1

= bµp
β−1

G′.

Then (zb−µ)
pβ−1

∈ G′ and hence o(zb−µ) ≤ pβ−1. Since pβ−1 < pβ ,
then we obtain a contradiction with the selection of the element b.

We have CG(a) ∩ CG(b))/G′ = Z(H)/G′ × T/G′ , where T ≤
CG(a) ∩ CG(b))/G′. Therefore, CG(a) ∩ CG(b)) = Z(H).T and Z(H)∩
T = G′ =< c > . On the other hand G = H.(CG(a) ∩ CG(b)). Then
G = H.Z(H).T = H.T. Let us de�ne the intersection of H and T.We
have < c >= Z(H)∩ T ≤ H ∩ T and hence < c >≤ H ∩ T . We must
prove that H ∩ T ≤ < c >. Let us take an element x ∈ H. Therefore,
x = aαbβ. Let x ∈ T. Then x commutes with a and b. If (α, p) = 1,
then aα does not commute with b, since a and b do not commute.
On the other hand the element bβ commutes with b . Then x does
not commute with b. But x must commute with a and b. Therefore,
α must divide of p. Analogously, we obtain that β must divide of p.
The elements of the type a of degree, which is divided of p and b of
degree, which is divided of p. belong to Z(H). Then x ∈ Z(H) and
since x ∈ T, then x ∈ Z(H) ∩ T =< c > . Therefore, G = H.T and
H∩T =< c > . Hence G = H ∗T. Since T is of lower order of G. Then
T is a central commutator product of minimal groups. Since H is a
minimal group, then G is a central commutator product of minimal
groups. �

3. Structure of �nite p-groups with a minimal commuta-

tor subgroups

Lemma 3.1. Each clean �nite p−group G with a commutator
subgroup of order p can be represented as G = W ∗ B, where W is
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a cyclic p-group or a minimal group of the second or the third type
and B is a central commutator product of minimal groups of the �rst
type.

Proof. By Lemma 2.21, G can be represented as a central com-
mutator product of minimal groups and eventually one cyclic group.
If we take one pair of minimal groups of this central commutator prod-
uct, then according to Lemma 2.20, this pair can be taken with other
pair, where at least one of the groups is of the �rst type. Then in the
central commutator product by successive replacements the minimal
subgroups of the second and the third type can be reduced and will
remain at most one such group.

If the group G is of a central type, then in the central commutator
product after successive transformations will do not remain a group
of the second or the third type. It will remain only one cyclic group.

If the group G is of a non-central type, then it will remain one
group of the second or the third type. Let us denote the cyclic group
or the group of the second or the third type byW. The central commu-
tator product of other minimal groups denote by B . ThenG =W ∗B.
�

Theorem 3.2.(structural theorem for the �nite p-groups
with a commutator subgroup of order p). Each �nite p-group
G with a commutator subgroup of order p can be represented by the
following way: G =W ∗B×A, where the groupW is a cyclic p-group
or a minimal group of the second or the third type, B is a central
commutator product of minimal subgroups of the �rst type and A is
an Abelian group.

Proof. By Lemma 2.21, the group G can be represented as G =
U ×A, where A is an Abelian group and U is a clean group. Lemma
3.1 implies the group U can be represented as U =W ∗B , where W
is a cyclic group, or a minimal group of the second or the third type
and the group B is a central commutator product of minimal groups
of the �rst type. Therefore, G =W ∗B ×A . �

De�nition 3.3. Let G be a �nite p-group with a commutator
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subgroup G′ of order p and let c be the forming element of G′. Let
G can be represented as G = W ∗ B × A , where W,B and A are
the subgroups of Theorem 3.2. We will call the forming elements
of the system of the forming elements of the minimal groups, which
participate in the presentation of G as a central commutator product
a symplectic basis of G.

Let a1, a2, ..., as, b1, b2, ...bs, c1, c2, ..., cr be the elements, which form
a symplectic basis of the group G. Then they hold the following prop-
erties:

1) for i ∈ {1, 2, ..., s} it holds: a−1i biai = bic, and all other elements
of A commute together ;

2) if G is of a central type, then the cyclic group < c1 > contains
G′ and the cyclic subgroups, which are generated by other generating
elements do not contain G′. If the group G is of a non-central type
and either p 6= 2 or hG(c) ≥ 4, then the cyclic group < b1 > contains
G′ and the other cyclic subgroups, which are generated by A, do
not contain G′. If the group G is of a non-central type, p = 2 and
hG(c) = 2, then < b1 > contains G′ and at most one of the subgroups
< ai, bi > is isomorphic to the quaternion group of order eight.

3) Any element of the groupG is represented uniquely as a product

s∏
λ=1

s∏
µ=1

r∏
ν=1

aαλλ b
βµ
µ c

γν
ν

where the exponents αλ, βµ, γν take values from 0 to the order of the
corresponding coset in the factor group G/G′, with the exception of
the element c1 for a group of central type and the element b1 for a
group of a non-central type. In this case the exponents take values
from 0 to the order of c1 (to the order of b1, respectively).

Theorem 3.4. If G = G1 ∗ G2 ∗ ... ∗ Gk, then each element
of G is represented in the form g = g1g2...gk, where gi ∈ Gi for i ∈
{1, 2, ..., k} and if the element g has other presentation g = g′1g

′
2...g

′
k,

then g′i = gici , ci ∈ G′, g′i ∈ Gi.
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Proof. Let g ∈ G . According to condition 3 we obtain g =
g1g2...gk. Furthermore, let g = g′1g

′
2...g

′
k for gi ∈ Gi, i ∈ {1, 2, ..., k} .

Then g′ig
−1
i = g1g

′−1
1 g2g

′−1
2 ...g(i−1)g

′−1
(i−1)g(i+1)g

′−1
(i+1)...gkg

′−1
k . Conse-

quently, g′ig
−1
i ∈ Gi ∩

∏k
i 6=j,j=1Gj = G′. Then there is ci ∈ G′, such

that g′i = gici. �

De�nition 3.5. We will call the group W from the presentation
of G in Theorem 3.2 a key subgroup of the group G.

Theorem 3.6. Let G be a �nite p-group with a commutator
subgroup of order p . If the key subgroup of G is isomorphic to the
quaternion group Q8, then G can be represented as a product of two
groups A and B , which are normal subgroups of G and A∩B = G′. If
the key subgroup is not isomorphic to Q8, then G can be represented
as a semi-direct product of two Abelian groups.

Proof. We have proved, that G has a symplectic basis and
its non-central elements can be separated into pairs. We form two
Abelian groups A and B by the following way: we take one of the
elements from each pair of one symplectic basis of the group G and
we generate the group A by these elements . We generate the group B
by taking the other element of the corresponding pair, as well as the
central basis elements and G′ . So we obtain: A =< a1, a2, ..., as >
and B =< b1, b2, ..., bs, c1, c2, ..., cr, G

′ >, where c1, c2, ..., cr are the
central basis elements. Since B ⊇ G′ , then B is a normal subgroup
of G. Let g ∈ G. Then g = a1

α1 ...as
αsb1

β1 ...bs
βsc1

γ1 ...cr
γr ∈ AB .

Therefore, G = AB.
We shall consider the following two cases:
1. Let in the basis one pair generate the quaternion group of order

eight and let this pair be a1, b1 and p = 2 . Then A∩B consists of the
commutator subgroup and it is generated by a21 = b21 . Let g ∈ A ∩B.
Then g = a1

α1 ...as
αs ∈ A and g = b1

β1 ...bs
βsc1

γ1 ...cr
γr t ∈ B, t ∈ G′.

Hence,

(3.1) a1
α1 ...as

αsb1
−β1 ...bs

−βsc1
−γ1 ...cr

−γr t−1 = 1.
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Let Q8 =< a1, b1 > . In (3.1.) the element t−1 can be included in the

element b−β11 , since the elements, which participate in (3.1), are from
a symplectic basis of G. Then all factors, except for a1 and b1, will be
equal to the unit and this equation will be reduced to aα1

1 b−β11 = 1 .
However the obtained equation is an equation in Q8 and it is possible
only when α1 and β1 are even numbers. Therefore, A ∩ B coincides
with G′.

2. In the symplectic basis of the group G there is not a pair, which
generates Q8. Then we consider again the equation (3.1). In this case
< ai > ∩< bi > = 1, where ai and bi form a pair in the basis and
then in (3.1) each factor will be equal to the unit. Hence A ∩ B = 1
and therefore, in this case the group G is a semi-direct product of A
and B. �

Lemma 3.7. Let G be a �nite p-group and let G′ have an order
p. Suppose, that G is represented according to Theorem 3.6. Then
|A/Z ∩ A| = ps, |B/Z ∩ B| = ps and |G/Z| = p2s, where Z is the
center of the group G.

Proof. Consider two cases:
1. Let G be a semi-direct product of the subgroups A and B.

Then |G| = |A|.|B|, since A ∩B = 1. Furthermore

Z = (Z ∩A)(Z ∩B).

Therefore,

|Z| = |Z ∩A||Z ∩B|,

|G/Z| = |G|
|Z|

=
|A|.|B|

|Z ∩A||Z ∩B|
=

|A|
|Z ∩A|

|B|
|Z ∩B|

=

= |A/(Z ∩A)||B/(Z ∩B)|.

However

A =< a1, a2, ..., as >,B =< b1, b2, ..., bs, c1, c2, ..., cr > .
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Since each element of degree p commutes with all elements of G, then
we have Ap ⊆ Z. We consider the factor group A/(Z ∩ A). Since
(ai(Z ∩A))p = api (Z ∩A) = Z ∩A, then A/(Z ∩A) is an elementary
Abelian group. Therefore, the generating elements have an order p.
Hence the whole group is an elementary Abelian group of order ps

and the elements a1, a2, ..., as form its basis. Then |A/(Z ∩A)| = ps.
Analogously, |B/(Z ∩B)| = ps . Then |G/Z| = psps = p2s.

2. Let G = A.B. Then

|G| = |A||B|
|A ∩B|

=
|A||B|
|G′|

=
|A||B|
p

=
|A||B|

2
=

1

2
|A||B|;

|Z| = 1

2
|Z ∩A||Z ∩B|;

|G/Z| = |G|
|Z|

=
|A||B|

|Z ∩A||Z ∩B|
and analogously to the �rst case we obtain that |G/Z| = p2s. �

De�nition 3.8. We will say, that the elements a, b ∈ G form a

symplectic pair , if the following conditions are hold:
1) [b, a] = c;
2) the element a has a minimal order in the coset aCG(b) and
3) the element b has a minimal order in the coset bCG(a) .

De�nition 3.9. If a and b form a symplectic pair, the order of
a is pi and the order of b is pj , then the pair (a, b) is called a pair of

the type (i, j). The number of the symplectic pairs of the type (i, j)
we will denote by δij , i, j ∈ {1, 2, ..., k}.

It is not hard to see, that the factor group G/Z is an elementary
Abelian p-group. Therefore, it can be considered as a linear space over
the �eld GF (p) of p-elements. The operations in this linear space are
determined by

(3.2.) aZ + bZ =def abZ,
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(3.3.) λ(aZ) =def aλZ.

We shall prove, that the operations of (3.2) and (3.3) are correct.

In fact a1Z = aZ implies a1 = az1 and b1Z = bZ implies b1 = bz2,
z1, z2 ∈ Z. Then

a1Z + b1Z =def a1b1Z = abZ =def aZ + bZ

and

λ(a1Z) =
def aλ1Z = (az1)λ

Z = aλzλ1Z = aλZ =def λ(aZ).

Let a, b ∈ G. Since [a, b] ∈ G′ =< c >, then [a, b] = cα, α ∈ GF (p).

Then we denote by α = logc[a, b].

De�nition 3.10. In the obtained linear space G/Z over the �eld
GF (p) we introduce a symplectic product (aZ, bZ), where aZ, bZ ∈
G/Z by the following way: (aZ, bZ) = logc[a, b].

We shall prove, that the De�nition 3.10 is correct. In fact a1Z =
aZ implies a1 = az1 and b1Z = bZ implies b1 = bz2, z1, z2 ∈ Z. Let
(aZ, bZ) = logc[a, b] and (a1Z, b1Z) = logc[a1, b1]. Then

(a1Z, b1Z) = logc[a1, b1] = logc[az1, bz2] =

= logc([a, b][a, z2][z1, b][z1, z2]) = logc[a, b] = (aZ, bZ).

Lemma 3.11. The symplectic product (x, y) ∈ GF (p) has the
following properties:

1) (x, y) = −(y, x);
2) (x1 + x2, y) = (x1, y) + (x2, y);
3) (x, y1 + y2) = (x, y1) + (x, y2);
4) (x, x) = 0;
5)(λx, y) = λ(x, y) and
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6) (x, λy) = λ(x, y)
for x, y, x1, x2, y1, y2 ∈ G/Z, λ ∈ Z .

Proof. We put x = aZ, y = bZ, x1 = a1Z, x2 = a2Z . Suppose,
that λ, λ1, λ2 ∈ GF (p).

1) Let (aZ, bZ) = α, i.e. [a, b] = cα. Then [b, a] = c−α, i.e.
(aZ, bZ) = −(bZ, aZ).
2) Let (a1Z, bZ) = logc[a1, b], (a2Z, bZ) = logc[a2, b]. Then
(x1 + x2, y) = (a1Z + a2Z, bZ) =

def (a1a2Z, bZ) =
= logc[a1a2, b] = logc[a1, b][a2, b] =
= (x1, y) + (x2, y) = (a1Z, bZ) + (a2Z, bZ) =
= logc[a1, b] + logc[a2, b] = logc([a1, b][a2, b]).
3) The proof is analogously to 2).
4) (x, x) = (aZ, aZ) = logc[a, a] = logc1 = 0 .
5) (λx, y) = (λaZ, bZ) = (aλZ, bZ) = logc[a

λ, b] = logc[a, b]
λ =

λlogc[a, b] = λ(x, y).
6) The proof is analogously to 5). �

De�nition 3.12. A linear space, where a symplectic product is
determined , is called a symplectic space.

4. Invariants of �nite p-groups with a minimal commuta-

tor subgroups

We introduce the following indications:
Gij = G[pi] ∩ CG(G[pj−1]),

i.e. Gij consists of all elements of the group G, whose orders are less
than or equal to pi and which commute with all elements of order less
than or equal to pj−1.

Lemma 4.1. If i1 ≤ i or j ≤ j1 , then Gi1j1 ⊆ Gij , i, i1, j, j1 ∈ N.
Proof. The inequality i1 ≤ i implies G[pi1 ] ⊆ G[pi]. Then j−1 ≤

j1 − 1 implies CG(G[p
j1−1]) ⊆ CG(G[pj−1]) and Gi1j1 ⊆ Gij . �

Let i < j and let the number of the symplectic pairs of the type
(i, j) in one �xed basis ofG be s . Let these pairs be (x1, y1), (x2, y2), ...,
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(xs, ys). We form the group H = 〈x1, x2, ..., xs〉, where xk are of or-
der pi and yk are of order pj , for i, j, k ∈ {1, 2, ..., s}. The group H
is an Abelian group, since if we take two di�erent symplectic pairs,
then each element of one pair will commute with each element of
the other pair. These elements form a basis, since they are from
the basis of G. The group H decomposes into the direct product
H =< x1 > × < x2 > ×...× < xs > .

Lemma 4.2. Let i < j . Then Gij = HGi−1jGij+1, i, j ∈ N.
Proof. The de�nitions for Gij = G[pi] ∩ CG(G[pj−1]) and
H =< x1 > × < x2 > ×...× < xs > imply H ⊆ G. Hence, by

lemma 4.1, we obtain HGi−1jGij+1 ⊆ Gij .
Let x ∈ Gij . Denote by Gi the subgroup of G, which is generated

by all non-central basis elements of G of order pi. This subgroup can
be represented as Gi = H.F.T, where F is generated by the basis
elements of Gi, which commute with the elements of G[pi] and T
is generated by the remaining basis elements of Gi. We can see at
once that F ⊆ Gij+1. It holds x ∈ Gij ⊆ G[pi]. Therefore, x = x1x

′,
where x ∈ G[pi−1], x′ ∈ Gi. Then x′ = x2x3x4, where x2 ∈ H,
x3 ∈ F, x4 ∈ T. Then x = x1x2x3x4. Since x2 ∈ h ⊆ Gij and
x3 ∈ F ⊆ Gij+1 ⊆ Gij, then x2x3 ∈ Gij . Hence, in view of x ∈
Gij it follows x1x4 ∈ Gij . Let x4 = tα1

1 tα2
2 ...tαkk cα, where t1, t2, ..., tk

are the generating elements of T. Let (t1, t
′
1), (t2, t

′
2), , , (tk, t

′
k) be the

corresponding symplectic pairs of the basis of G. The de�nitions of the
groups H, F and T imply t′l ∈ G[pj−1] for l ∈ {1, 2, ..., k}. Then x1x4
commutes with t′l for l ∈ {1, 2, ..., k}. Since t′l commutes with all basis
elements of G except tl, then αl is divided by p for l ∈ {1, 2, ..., k}.
Consequently, the element x4 has an order less than or equal to pi−1.
Besides |x1| ≤ pi−1. Hence x1x4 ∈ G[pi−1]. Then x1x4 ∈ Gij implies
x1x4 ∈ Gi−1j and Gij ⊆ HGi−1jGij+1.

Note, that in the reasoning x = x1x2x3x4 the factor x4 can move
to the second place, since Gij+1 is a normal subgroup of G and x4
commutes with x2.

We shall also note, that all re�ections in the proof of this lemma
are led for i ≥ 2 . If i = 1 these re�ections are still in force assuming
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that Gi−1j = 1. The lemma is proved. �

Theorem 4.3.[7](Theorem 4.7.2. p. 112) If H is a subgroup of G
and K is a normal subgroup of G, then H ∩K is a normal subgroup
of H and HK/K ∼= H/(H ∩K).

ConsiderHGi−1jGij+1/Gi−1jGij+1. Then, by Lemma 3.6 and The-
orem 3.7,

Gij/Gi−1jGij+1 = HGi−1jGij+1/Gi−1jGij+1
∼= H/(H ∩Gi−1jGij+1).

Lemma 4.4. If i < j, then H ∩Gi−1jGij+1 = Hp, i, j ∈ N.
Proof. We have Hp ⊆ H. Besides Hp ⊆ Z. Hence

Hp ⊆ C(G[pj−1]). The elements of H are of order, less than or equal
to pi. Therefore, Hp ⊆ G[pi−1], Hp ⊆ Gi−1j ⊆ Gi−1jGij+1 and H

p ⊆
H ∩Gi−1jGij+1.

We have to prove the converse, namely H ∩ Gi−1jGij+1 ⊆ Hp.
Let x ∈ H ∩Gi−1jGij+1 be an arbitrary element. Then x ∈ H and
therefore, x = xα1

1 xα2
2 ...xαss . We have to prove, that each exponent αi

is divided by p. Namely then x will belong to Hp. We have x = yz,
where y ∈ Gi−1j and z ∈ Gij+1. Consequently, x

α1
1 xα2

2 ...xαss = yz.We
choose an arbitrary factor xαtt . Our aim is to show that αt is divided
by p . The element xt is from the basis of G and participates in
the symplectic pair (xt, yt) of the type (i, j). Since z ∈ Gij+1, then
z ∈ CG(G[pj ]), the order of yt is pj and ytz = zyt. Besides y ∈ Gi−1j
implies y ∈ G[pi−1]. Hence y is expressed by the elements of the
basis, which are of order less than or equal to pi−1 and the order of
(xt) is p

i. Therefore, xt can not participate in the presentation of y
by elements of the basis. Then yt will commute with y, since yt does
not commute only with xt . Consequently, , yyt = yty. On the other
hand yt commutes with y and with z. Hence yt commutes with yz
and xα1

1 xα2
2 ...xαss = yz implies yt commutes with xα1

1 xα2
2 ...xαss . But

yt commutes with all factors except xt and if αt is not divided by p,
then yt does not commute with xαtt . Therefore, αt is divided by p.
Since αt was selected arbitrary, then all exponents are divided by p
and x ∈ Hp. �
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Theorem 4.5. Let i < j . Then Gij/Gi−1jGij+1
∼= H/Hp,

i, j ∈ N.
Proof. By application of Lemma 4.2, Theorem 4.3 and Lemma

4.4 we obtain

Gij/Gi−1jGij+1 = HGi−1jGij+1/Gi−1jGij+1
∼=

∼= H/(H ∩Gi−1jGij+1) = H/Hp.

�

It is obvious, that δi =
∑n

j=1 δij , where δi is the i−th Ulm-
Kaplansky invariant of G/G′. Then δi is an invariant of G. Therefore,
it can be proved, that δii are invariants of the group G.

Lemma 4.6. If the key subgroup is not cyclic, then it is a minimal
group of the second or the third type and its forming elements form
a symplectic pair.

Proof. Let the key subgroup be of the second type. Then ap
α
=

1, bp
β−1

= c . We have to prove, that the element a has the lowest
order in the coset aCG(b) and the element b has the lowest order
in the coset bCG(a) . The key subgroup is one of the factors in
the decomposition in a central commutator product. Then we can
determine CG(a) and CG(b) . Since G = K ∗ T and K is the key
subgroup, we consider CG(a) =< a > ×< bp > × T , . Therefore,
T ⊆ CG(a) and T ⊆ CG(b) .

Let us consider the elements of bCG(a) . They are of the type:

aλb1+µpt . We raise in degree pα−1 and then
(
aλb1+µpt

)pβ−1

6= 1 , i.e.

aλp
β−1

bp
β−1

bµp
β
tp
β−1 6= 1 . We assume, that aλp

β−1
bp
β−1

tp
β−1

= 1.
Then aλp

β−1
= 1 , bp

β−1
= 1, tp

β−1
= 1 . Since bp

β−1 6= 1, then
we obtain a contradiction. Analogously, we consider CG(b) =< ap >
×< b >× T and obtain the same result. �

Theorem 4.7. The key subgroup of the group G is unique up to
isomorphism.
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Proof. We will �rst consider the case, when G is of the central
type. Then the key subgroup of G is cyclic and its order is phZ(c) and
phZ(c) = phG(c). Since hZ(c) is an invariant of c , then this cyclic
subgroup is de�ned up to isomorphism.

Let G be a group of a non-central type. Let W1 be the key sub-
group of G and let the order of G be greater or equal to 16. Let G be
not isomorphic to the following group:

(∗) a4 = 1, b2 = c, [b, a] = c.

Then W1 will generate by the elements a1 and b1 , so that

ap
α1

1 = 1, bp
β−1

1 = c, [b1, a1] = c.
In this case the elements a1 and b1 form a symplectic pair.

Let pβ−1 6= 2 and let W2 be other key subgroup of G . Then it is

generated by the elements a2 and b2. Here the condition b
pβ−1

2 = c is
hold, since hG(c) = pβ−1 and this height is an invariant of G . In this
case the group W2 has an order greater or equal to 16. Furthermore
W2 is not cyclic, since the group G is of a non-central type. Therefore,
W2 is of the type:

ap
α2

2 = 1, bp
β−1

2 = c, [b2, a2] = c.

The equations bp
β−1

1 = c and bp
β−1

2 = c imply bp
β−1

1 = bp
β−1

2 . Since

pβ−1 > 2, then the last equation implies (b1b
−1
2 )p

β−1
= 1 . If the

element b2 commutes with a1, then b−12 ∈ CG(a1). Then b1b
−1
2 ∈

b1CG(a1) . This element has an order pβ−1 < pβ = o(b1) . Since
in the coset b1CG(a1) the element b1 has the lowest order , then we
obtain a contradiction with the fact that b1b

−1
2 has lower order, since

the elements a1 and b1 form a symplectic pair. Therefore, b2 does
not commute with a1 , i.e. a1 /∈ CG(b2). Since each element, which
does not belong to CG(b2), has an order, greater or equal to the order
of a2, then o(a1) ≥ o(a2). By symmetry proves that o(a2) ≥ o(a1) .
Then o(a1) = o(a2) and α1 = α2. Therefore, W1

∼=W2 .
Let pβ−1 = 2 . Then we consider the groups:
W1 : a

2α1
1 = 1, b21 = c, [b1, a1] = c;

W2 : a
2α2
2 = 1, b22 = c, [b2, a2] = c.
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First, we will prove, that if 2α1 > 4, then b1 and b2 commute.
Consider CG(b1) . The index of CG(b1) in the group G is 2 and
the cosets of G by CG(b1) are CG(b1) and a1CG(b1). If b2 does not
commute with b1 , then b2 ∈ a1CG(b1) . In this coset each element
has order greater or equal to the order of a1, but o(a1) = 2α1 and
2α1 > 4 . This is a contradiction. Therefore, b1 and b2 commute.
Then (b1b2)

2 = b21b
2
2 = c.c = 1 and hence o(b1b2) = 2.

We assume that b2 does not commute with a1. Then the element
b1b2 ∈ b1CG(a1) has an order 2 and the minimal order is o(b2) = 4.
Then we obtain a contradiction and a1 and b2 do not commute, i.e.
a1 /∈ CG(b2). All elements, which do not belong to CG(b2), have order,
greater or equal to o(a2). Then o(a1) ≥ o(a2). Analogously, o(a2) ≥
o(a1). Then o(a1) = o(a2). Therefore, when pβ−1 > 2 or pβ−1 = 2
and 2α1 > 4, we obtain, that the key subgroup of G is unique. We
will consider the cases, when the key subgroup is isomorphic to the
group (∗), or to D8, or to Q8.

Let G be a group, which has a key subgroup and this key subgroup
is isomorphic to one of the three above-mentioned groups. Then G
is decomposed as a central commutator product of key subgroup of
selected type and minimal groups of �rst type and eventually groups
of the type D8 . Consider the subgroup G[4] . We know, that it is an
invariant of G. Consider G[4]/C . We obtain an elementary Abelian
2-group. The number of the direct factors of order 2 in this group
is de�ned by the number of the minimal groups of the �rst type, the
groups of the type D8 and the key subgroup. It is proved, that the
number of the minimal groups of the �rst type is an invariant. Then
the number of the groups of the type D8 and the key subgroup is an
invariant. Hence, we obtain an invariant of the group G. This group
is decomposed as a central commutator product of the selected key
subgroup and groups of the type D8 . We denote the total number
of the factors by n. One of these factors is the key subgroup and the
number of the groups of the type D8 is n−1, wheren ∈ N . We de�ne
the number of the elements of order 2 in this group. It can be veri�ed
by immediate calculations, that the number of the elements of order
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2 in these three cases of groups is:
First case: if W ∼= (∗) , then the number of involutions is 4n − 1.
Second case: if W ∼= Q8 , then the number of involutions is

4n − 2n − 1 .
Third case: if W ∼= D8 , then the number of involutions is

4n + 2n − 1 .
Therefore, in this case the key subgroup of G is unique up to

isomorphism. �

Lemma 4.8. Let the group G be represented in the form: G =
W ∗B ×A . Then

Zp
i
[p]/Gp

i+1
[p] ∼= Ap

i
[p]/Ap

i+1
[p].

Proof. Let G be represented in the form: G =W ∗B ×A. Then

Z =W p ×Bp ×A.

Hence
Zp

i
=W pi+1 ×Bpi+1 ×Api .

Then
Zp

i
[p] =W pi+1

[p]×Bpi+1
[p]×Api [p]

and
Gp

i+1
[p] =W pi+1

[p]×Bpi+1
[p]×Api+1

[p].

Therefore,
Zp

i
[p]/Gp

i+1
[p] ∼= Ap

i
[p]/Ap

i+1
[p].

�

Theorem 4.9. Let G be a �nite p-group with a commutator
subgroup of order p. Then the invariants of the key subgroup of G,
the numbers δi , δij for i < j, (i < j, i, j ∈ N) and Zp

i
[p]/Gp

i+1
[p]

form a full system of invariants of the group G.
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The following theorem is a main result of the paper and it gives a
criterion for isomorphism of �nite p-groups with a commutator sub-
group of order p.

Theorem 4.10. Let G be a �nite p-group with a commutator
subgroup of order p and let H be an arbitrary group. Then the groups
G and H are isomorphic if and only if H is a �nite p-group with a
commutator subgroup of order p and the following conditions hold:

1) the key subgroups WG and WH of the group G and H are
isomorphic;

2) δij(G) = δij(H) for i < j;
3) δi(G) = δi(H) and

4) |Zp
i

G [p]/Gp
i+1

[p]| = |Zp
i

H [p]/Hpi+1
[p]|.

The proofs of the Theorems 4.9 and 4.10 imply directly of the
assertions, which are proved earlier. �

An announcement of the results of this paper is submitted for
publication in [9].
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