ON FIXED POINTS FOR REICH MAPS IN B-METRIC SPACES

ATANAS V. ILCHEV, BOYAN G. ZLATANOV

ABSTRACT: In this paper we find sufficient conditions for the existence and uniqueness of fixed points for a class of Reich maps in b-metric space. These conditions do not involve the b-metric constant. We establish a priori error estimate for the sequence of successive iterations. The error estimate, which we present is better than that the well-known one for a wide class of Reich maps in metric spaces.

KEYWORDS: Fixed point, Hardy-Rogers map, b-Metric space, A priori error estimate

1. INTRODUCTION

Fixed point theory has got wide applications in different branches of mathematics. Since the work of S. Banach [3] known as the Banach Contraction Principle, many mathematicians have extended and generalized the results in [3]. Some of the classical generalizations of [3] are presented in [15]. The concept of a b-metric space as a generalization of a metric space is introduced in [6] and a contraction mapping theorem is proved there. Since then results about fixed points, variational principles and applications were obtained in b-metric spaces. We will cite just a few recent results in these directions [1, 2, 5, 6, 7, 9, 12, 14, 15, 19].

An extensive study of the problem about fixed points in different distance spaces and references can be found in [11]. Following [11] we recall some definitions and properties for b-metric spaces.

Definition 1.1. Let X be a non-empty set and $s \ge 1$. A functional $\rho: X \times X \to \mathbb{R}$ is called a b-metric if it satisfies the following conditions:

$$\rho(x,y) \ge 0$$
 for all $x, y \in X$ and $\rho(x,y) = 0$ if and only if $x = y$;

$$\rho(x,y) = \rho(y,x) \text{ for all } x,y \in X;$$

$$\rho(x,y) \le s(\rho(x,z) + \rho(z,y)) \text{ for all } x,y,z \in X.$$

The ordered pair (X, ρ) is called a b-metric space (with constant s).

Any metric space is a b-metric space with s=1. An example of b-metric is the functional $\rho_p: l_p \times l_p \to \mathbb{R}$, defined by $\rho_p(x,y) = \sum_{i=1}^\infty \left| x_i - y_i \right|^p$. It is easy to see that in this case $s=2^{p-1}$. Other classical example of b-metric space is \mathbb{R} endowed with the b-metric function $\rho_p(x,y) = \left| x-y \right|^p$ for $p \in [1,+\infty)$. It is easy to see that in this case $s=2^{p-1}$ and for p=1 we get the metric space of the real numbers with a metric $\rho_1(x,y) = \left| x-y \right|$. Another examples of b-metric space are Orlicz and Musielak-Orlicz spaces endowed with Orlicz and Musielak Orlicz function modulars respectively [10, 13].

Definition 1.2. Let (X, ρ) be a b-metric space.

- a) A sequence $\left\{x_n\right\}_{n=1}^{\infty}$ is called b-convergent if there exists $x \in X$, such that for any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that the inequality $\rho(x, x_n) < \varepsilon$ holds true for all $n \ge N$;
- b) A sequence $\{x_n\}_{n=1}^{\infty}$ is called b-Cauchy sequence if for any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that the inequality $\rho(x_m, x_n) < \varepsilon$ holds true for all $n > m \ge N$;
- c) The b-metric space (X, ρ) is called complete b-metric space if any Cauchy sequence is convergent;
- d) A subset $A \subseteq X$ is called b-bounded if $\sup \{ \rho(x,y) : x, y \in A \} < \infty;$

- e) If the set A is b-bounded then the number $\sup\{\rho(x,y)\colon x,y\in A\}$ is called its b-diameter and is denoted with $\delta_b(A)$.
- f) A subset $A \subseteq X$ is called b-closed if for any convergent sequence $\left\{x_n\right\}_{n=1}^{\infty} \subset A$ the convergence $\lim_{n \to \infty} x_n = x$ implies $x \in A$.
- g) A b-metric function ρ is called continuous if for any $y \in X$ and any $\varepsilon > 0$ there exists $\delta = \delta(y, \varepsilon) > 0$ such that there holds the inequality $|\rho(y, x) \rho(y, z)| < \varepsilon$, provided that $\rho(x, z) < \delta$. It is easy to observe that if ρ is continuous and x_n is b-convergent to x then $\rho(y, x_n) \to \rho(y, x)$.

Every b-convergent sequence in b-metric space is a b-Cauchy sequence. If a sequence is a b-convergent in b-metric space then its limit is unique. In general a b-metric function is not continuous [6, 11].

We will recall the definition of Hardy-Rogers maps in metric spaces.

Definition 1.3. ([8]) Let (X,d) be a metric space. A map $T: X \to X$ is a Hardy-Rogers map is there exist nonnegative constants a_i , i = 1, 2, 3, 4, 5, satisfying $\sum_{i=1}^{5} a_i < 1$ such that for each

 $x, y \in X$ the inequality $d(Tx, Ty) \le a_1 d(x, y) + a_2 d(x, Tx) + a_3 d(x, Ty) + a_4 d(x, Ty) + a_4 d(x, Ty) + a_5 d(x, Ty)$

 $d(Tx,Ty) \le a_1 d(x,y) + a_2 d(x,Tx) + a_3 d(y,Ty) + a_4 d(x,Ty) + a_5 d(y,Tx)$ holds.

As pointed in [8] from the symmetry of the function d it follows that $a_2=a_3$ and $a_4=a_5$. Therefore if T is a Hardy-Rogers contraction then there exist $k_1,\,k_2,\,k_3\geq 0$, such that $k_1+2k_2+2k_3<1$ and there holds the inequality

(1)
$$d(Tx,Ty) \le k_1 d(x,y) + k_2 (d(x,Tx) + d(y,Ty)) + k_3 (d(x,Ty) + d(y,Tx)).$$

For the rest of the article we will consider maps $T: X \to X$ that satisfy (1), where the metric d is replaced with a b-metric ρ .

Classes of Hardy-Rogers map in b-metric space (X, ρ) , where the metric d in (1) is replaced with the b-metric ρ , are investigated in [12, 14, 15].

Let us point out that as far as any b-metric is a symmetric function we can assume that for any Hardy-Rogers map, which is defined in a b-metric space (X, ρ) , there holds $a_2 = a_3$ and $a_4 = a_5$.

If $k_1 = k_2 = 0$ and $k_3 \in [0,1/2)$ in (1) we get Chatterjea's map [12, 14, 15] in b-metric space. If $k_1 = k_3 = 0$ and $k_2 \in [0,1/2)$ in (1) we get Kannan's map [14, 15] in b-metric space. If $k_3 = 0$ and $k_1 + 2k_2 < 1$ in (1) we get Reich's map in b-metric space. Reich's map were introduced in [16] for metric spaces.

We will denote for the rest of the article $\alpha = \frac{k_1 + k_2}{1 - k_2}$, where k_1, k_2, k_3 are the constant from (1), where $k_3 = 0$. From $k_1 + 2k_2 < 1$ it follows that $\alpha \in [0,1)$.

2. FIXED POINTS FOR REICH'S MAPS IN B-METRIC SPACES

Theorem 2.1. Let (X, ρ) be a complete b-metric space, ρ be a continuous function, $T: X \to X$ be a Reich map, such that the inequality $\sup_{n \in \mathbb{N}} \left\{ \rho \left(T^n x, x \right) \right\} < \infty$ holds for any $x \in X$. Then

- (i) there exists a unique fixed point say ξ of T;
- (ii) for any $x_0 \in A$ the sequence $\{x_n\}_{n=1}^{\infty}$ converges to ξ , where $x_{n+1} = Tx_n$, n = 0,1,2,...;

(iii) there holds the a priori error estimate $\rho(\xi, T^m x) \le \alpha^m \sup_{j \in \mathbb{N}} \rho(T^j x, x)$.

Lemma 2.2. Let (X, ρ) be a b-metric space and let $T: X \to X$ be a Reich map. Then for any $x \in X$ there holds the inequality

(2)
$$\rho\left(T^{n+1}x, T^{n}x\right) \leq \left(\frac{k_1 + k_2}{1 - k_2}\right) \rho\left(T^{n}x, T^{n-1}x\right)$$

for any $n > m \ge 1$.

Proof. For any $x \in X$ we get the inequality

$$\rho(T^{n+1}x,T^{n}x) \leq k_{1}\rho(T^{n}x,T^{n-1}x) + k_{2}(\rho(T^{n+1}x,T^{n}x) + \rho(T^{n}x,T^{n-1}x))$$

and consequently the inequality (2) holds true.

Corollary 2.3. Let (X, ρ) be a b-metric space and let $T: X \to X$ be a Reich map. Then for any $x \in X$ there holds the inequality

(3)
$$\rho\left(T^{n+1}x, T^{n}x\right) \leq \left(\frac{k_{1}+k_{2}}{1-k_{2}}\right)^{n} \rho\left(Tx, x\right)$$

for any $n > m \ge 1$.

Proof. After applying (2) n -times we get

$$\rho\left(T^{n+1}x, T^{n}x\right) \leq \left(\frac{k_{1} + k_{2}}{1 - k_{2}}\right) \rho\left(T^{n}x, T^{n-1}x\right) \leq \left(\frac{k_{1} + k_{2}}{1 - k_{2}}\right)^{2} \rho\left(T^{n-1}x, T^{n-2}x\right) \leq \dots \leq \left(\frac{k_{1} + k_{2}}{1 - k_{2}}\right)^{n} \rho\left(Tx, x\right).$$

Lemma 2.4. Let (X, ρ) be a b-metric space and let $T: X \to X$ be a Reich map, such that the inequality $\sup_{n \in \mathbb{N}} \left\{ \rho \left(T^n x, x \right) \right\} < \infty$. Then for any $x \in X$ and any $\varepsilon > 0$ there exists $N \in \mathbb{N}$, such that the inequality $\rho \left(T^n x, T^m x \right) < \varepsilon$ holds for any $n > m \ge N$.

Proof. After applying (1) and (2) we get

$$\rho(T^{n}x,T^{m}x) \leq k_{1}\rho(T^{n-1}x,T^{m-1}x) + k_{2}(\rho(T^{n}x,T^{n-1}x) + \rho(T^{m}x,T^{m-1}x))
\leq k_{1}\rho(T^{n-1}x,T^{m-1}x) + k_{2}(\alpha^{n-1}\rho(Tx,x) + \alpha^{m-1}\rho(Tx,x))
\leq k_{1}\rho(T^{n-1}x,T^{m-1}x) + k_{2}(\alpha^{n-1} + \alpha^{m-1})\rho(Tx,x)
\leq (k_{1})^{2}\rho(T^{n-2}x,T^{m-2}x) + (k_{1}k_{2}(\alpha^{n-2} + \alpha^{m-2}) + k_{2}(\alpha^{n-1} + \alpha^{m-1}))\rho(Tx,x)
= (k_{1})^{2}\rho(T^{n-2}x,T^{m-2}x) + k_{2}(k_{1}(\alpha^{n-2} + \alpha^{m-2}) + \alpha^{n-1} + \alpha^{m-1})\rho(Tx,x)$$

After applying the above technique (m-2)-times and using the easy to check inequality $k_1 \leq \alpha$ and the equality $k_2 \cdot \frac{1+\alpha}{\alpha-k_1} = 1$ we get

$$\rho(T^{n}x, T^{m}x) \leq (k_{1})^{m} \rho(T^{n-m}x, x) + k_{2} \left(\sum_{j=0}^{m-1} (k_{1})^{j} (\alpha^{n-1-j} + \alpha^{m-1-j}) \right) \rho(Tx, x)
\leq (k_{1})^{m} \rho(T^{n-m}x, x) + k_{2} \left(\sum_{j=0}^{m-1} (k_{1})^{j} \alpha^{m-1-j} + \alpha^{n-m} \sum_{j=0}^{m-1} (k_{1})^{j} \alpha^{m-1-j} \right) \rho(Tx, x)
\leq (k_{1})^{m} \rho(T^{n-m}x, x) + k_{2} \frac{\alpha^{m} - (k_{1})^{m}}{\alpha - k_{1}} (1 + \alpha^{n-m}) \rho(Tx, x)
\leq \left((k_{1})^{m} \left(1 - k_{2} \frac{1 + \alpha}{\alpha - k_{1}} \right) + k_{2} \frac{1 + \alpha}{\alpha - k_{1}} \alpha^{m} \right) \sup_{n \in \mathbb{N}} \left\{ \rho(T^{n}x, x) \right\}
\leq \alpha^{m} \sup_{n \in \mathbb{N}} \left\{ \rho(T^{n}x, x) \right\}$$

Let $\varepsilon > 0$ be arbitrary chosen. From $\alpha \in (0,1)$ it follows that there exists $N \in \mathbb{N}$, such that there holds the inequality $\alpha^m < \frac{\varepsilon}{\sup_{n \in \mathbb{N}} \left\{ \rho \left(T^n x, x \right) \right\}}$ holds for any $n \geq N$. From (4) we get

that the inequality $\rho(T^n x, T^m x) \le \alpha^m \sup_{n \in \mathbb{N}} \{\rho(T^n x, x)\} < \varepsilon$ holds for any $n > m \ge N$.

Proof. of Theorem 2.1 (i) Let $x \in X$ be arbitrary.

From Lemma 2.4 we have that the sequence $\left\{T^n x\right\}_{n=1}^{\infty}$ is a

Cauchy sequence. From the assumption that X is complete b-metric space it follows that the sequence $\left\{T^n x\right\}_{n=1}^{\infty}$ is b-convergent.

Therefore it follows that there exists $\xi = \lim_{n \to \infty} T^n x \in X$. After taking a

limit on $m \to \infty$ from the assumption that the b-metric is continuous and using that T is Reich map and using Corollary 2.3 we get the inequality

$$\rho \left(T\xi,\xi\right) = \lim_{m \to \infty} \rho \left(T\xi,T^mx\right) \leq \lim_{m \to \infty} \left(k_1 \rho \left(\xi,T^{m-1}x\right) + k_2 \left(\rho \left(T\xi,\xi\right) + \rho \left(T^mx,T^{m-1}x\right)\right)\right) = k_2 \rho \left(T\xi,\xi\right)$$

and therefore $\rho(T\xi,\xi)=0$ i.e. ξ is a fixed point for T.

Let suppose that there are two fixed points $\,\xi \neq \eta\,.$ Then from the inequality

$$\rho(\xi,\eta) = \rho(T\xi,T\eta) \le k_1 \rho(\xi,\eta) + k_2 \left(\rho(T\xi,\xi) + \rho(T\eta,\eta)\right) = k_1 \rho(\xi,\eta)$$

and the assumption that $k_1 \in [0,1)$ it follows that $\xi = \eta$.

- (ii) The proof follows from (i), because any sequence $\left\{T^nx_0\right\}_{n=1}^{\infty}$ is convergent to the fixed point of T, which is unique.
- (iii) Let $x \in X$ be arbitrary. From (4) we have that the inequality

$$\rho(T^n x, T^m x) \le \alpha^m \sup_{n \in \mathbb{N}} \left\{ \rho(T^n x, x) \right\}$$

holds for every $n > m \ge 1$ and every $x \in X$. From (ii) it follows that the sequence $\left\{T^n x\right\}_{n=1}^{\infty}$ converges to the unique fixed point ξ .

Therefore using the continuity of ρ we get

$$\rho(\xi, T^m x) = \lim_{n \to \infty} \rho(T^n x, T^m x) \le \alpha^m \sup_{n \in \mathbb{N}} \left\{ \rho(T^n x, x) \right\}.$$

As far as any metric space is a b-metric space, then Theorem 2.1 holds true for arbitrary metric space. If (X,d) is a complete metric space and T be Reich map, then the a priori error estimate can be obtained from the proof of (Theorem 1 [8])

(5)
$$d\left(\xi, T^{m} x\right) \leq \frac{\alpha^{m}}{1-\alpha} d\left(Tx, x\right).$$

If we assume that $\sup_{j\in\mathbb{N}} \rho(T^j x, x) \le \rho(Tx, x)$ then we will get from Theorem 2.1 the a priori estimate

(6)
$$\rho(\xi, T^m x) \leq \alpha^m \rho(Tx, x).$$

Let us mention that in this case the a priori estimate (5) is better, than (6). Let $\varepsilon \in (0, \rho(Tx, x))$, $m_{\alpha} \in \mathbb{N}$ be the smallest number, that satisfies (5) and $n_{\alpha} \in \mathbb{N}$ be the smallest number, that satisfies (6). Then

$$n_{\alpha} - m_{\alpha} \ge \left| \frac{\log \frac{\varepsilon (1 - \alpha)}{\rho (Tx, x)}}{\log \alpha} \right| - \left(\left| \frac{\log \frac{\varepsilon}{\rho (Tx, x)}}{\log \alpha} \right| + 1 \right) = \left| \frac{\log (1 - \alpha)}{\log \alpha} \right| - 1.$$

If k_1+2k_2 gets close to 1 then α gets closer to 1 and therefore $n_\alpha-m_\alpha$ gets closer to infinity.

We would like to point out that if the space is a metric space than using the triangle inequality we can obtain (5) from Theorem 2.1 iii).

Example 2.5. Let us consider the b-metric space (\mathbb{R}, ρ_p) for $p \ge 1$. Let us define the map $T:[0,+\infty) \to [0,+\infty)$, by

$$Tx = \begin{cases} \frac{1}{2}, & x \in [0,1) \\ \frac{1}{4}, & x \in [1,+\infty) \end{cases}$$
, which is a variation of the examples from

[12]. It is easy to observe that the Picard iteration sequence $x_n = Tx_{n-1}$ converges to the fixed point x = 0 for any initial point $x_1 \in [0, +\infty)$ (Figure 1).

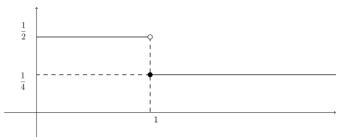


Figure 1

If $x, y \in [0, \beta)$ or $x, y \in [\beta, +\infty)$, then T satisfies the condition in Definition 1.4 for any k_1, k_2 , because $\rho_p(Tx, Ty) = |Tx - Ty|^p = 0$.

If $y \in [0,1)$ and $x \in [1,+\infty)$, then we get $\rho_p(Tx,Ty) = \left| \frac{1}{4} - \frac{1}{2} \right|^p = \left| \frac{1}{4} \right|^p.$

Let us denote $f_p(x, y) = |x - y|^p + \left|\frac{1}{4} - x\right|^p + \left|\frac{1}{2} - y\right|^p$. The inequality $f_p(x, y) \ge f_p(1, y)$ holds for any $x \in [1, +\infty)$ and $y \in [0, 1)$.

$$f_{p}(1,y) = \begin{cases} (1-y)^{p} + \left(\frac{3}{4}\right)^{p} + \left(\frac{1}{2} - y\right)^{p}, & 0 \le y \le \frac{1}{2} \\ (1-y)^{p} + \left(\frac{3}{4}\right)^{p} + \left(y - \frac{1}{2}\right)^{p}, & \frac{1}{2} \le y \le 1 \end{cases}$$
 it is easy to

calculate that

$$\min_{y \in [0,1]} f_p(1, y) = \min \left\{ \min_{y \in [0,1/2]} f_p(1, y), \min_{y \in [1/2,1]} f_p(1, y) \right\} = f_p\left(1, \frac{3}{4}\right).$$

Consequently we get

$$\frac{1}{4}\rho_p(x,y) + \frac{1}{4}\left(\rho_p(Tx,x) + \rho_p(Ty,y)\right) = \frac{1}{4}f_p(x,y) \ge \frac{1}{4}f_p\left(1,\frac{3}{4}\right) > \left|\frac{1}{4}\right|^p = \rho_p(Tx,Ty)$$

Therefore T satisfies the condition in Definition 1.4 for $k_1=k_2=\frac{1}{4}$.

When applying fixed point theorems for approximating of a solution of the equation Tx = x we usually find an initial starting point x_0 , which belongs to a neighborhood U of the solution ξ , such that $T: U \to U$ and U is bounded and closed. Thus the next Corollary can be applied in a wide class of problems.

Corollary 2.6. Let (X, ρ) be a complete b-metric space, ρ be a continuous function, $A \subseteq X$ be a b-bounded and b-closed set, $T: A \to A$ be Reich map. Then

- (i') there exists a unique fixed point say ξ of T;
- (ii') for any $x_0 \in A$ the sequence $\left\{x_n\right\}_{n=1}^{\infty}$ converges to ξ , where $x_{n+1} = Tx_n$, $n=0,1,2,\ldots$;
- (iii') there holds the a priori error estimate $\rho(\xi, T^n x) \le \alpha^m \delta_b(A)$.

We would like to pose an open question: Is it possible to obtain a similar result for Hardy-Rogers maps in b-metric spaces, without involving the b-metric constant, as like as Theorem 2.1 and [11].

Acknowledgement

The second author is partially suppored by Plovdiv University "Paisii Hilendarski" NPD Project NI 15 – FMI – 004.

REFERENCES

[1] R. Allahyari, R. Arab, A.S. Haghighi, A generalization on weak contractions in partially ordered *b*-metric spaces and its application to quadratic integral equations, *Journal of Inequalities and Applications*, 2014 (355), 2014.

- [2] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst., Unianowsk, 30, 26-37, 1989.
- [3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrals, *Fund. Math.*, **3**, 133–181, 1922.
- [4] V. Berinde, *Iterative approximation on fixed points*, Springer, Berlin, 2007.
- [5] M. Bota, A. Molnár, C. Varga, On Ekeland's variationals principle in b-metric spaces, *Fixed point theory*, **12**(2), 21–28, 2011.
- [6] S. Czrezvik, Contraction mappings in b-metric spaces, *Acta Mathematica et Informatica Universitatis Ostravlensis*, **1**(1), 5–11, 1993.
- [7] A.K. Dubey, R. Shukla, R.P. Dubey, Some fixed point results in b-metric spaces, *Asian journal of mathematics and applications*, 2014, Article ID ama0147, 6 pages, 2014.
- [8] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, *Canad. Math. Bull.* **16**, 201-206, (1973).
- [9] C. Farkas, A.E. Molnár, S. Nagy, A generalized variational principle in b-metric spaces, *Le Matematiche*, LXIX, 205–221, 2014.
- [10] M A. Khamsi and W M. Kozlowski, *Fixed Point Theory in Modular Function Spaces*, Heidelberg: Springer, 2015
- [11] W. Kirk, N. Shahzad, *Fixed Point Theory in Distance Spaces*, Springer Cham Heidelberg New York Dordrecht London, 2014.
- [12] R. Koleva, B. Zlatanov, On Fixed Points for Chatterjea's Maps in b-Metric Spaces, *Turkish Journal of Analysis and Number Theory*, **4**(2), 31-34, 2016.
- [13] W M. Kozlowski, *Modular Function Spaces*, New York: Marcel Dekker Inc, 1988.
- [14] K. Mehmet, K. Hükmi, On Some Well Known Fixed Point Theorems in b-Metric Spaces, *Turkish Journal of Analysis and Number Theory*, **1**(1), 13-16, 2013.
- [15] P.K. Mishra, S. Sachdeva, S.K. Banerjee, Some fixed point theorems in b-metric space, *Turkish Journal of Analysus and Number Theory*, **2**(1), 19–22, 2014.
- [16] S. Reich, Kannan's fixed point theorem, Bull. Univ. Mat. Italiana, 4(4), 1-11, 1971.
- [17] B.E. Rhoades, A comparison of various definitions of contractive mappings, *Transactions of the American Mathematical Society*, **226**, 257-290, 1977.

- [18] B.E. Rhoades, S. Sessa, M.S. Khan, M.D. Khan, Some fixed point theorems for Hardy-Rogers type mappings, *Internat. J. Math. & Math. Sci.*, 7(1), 75-87, 1984.
- [19] W. Sintunavarat, S. Plubtieng, P. Katchang, Fixed point result and applications on *b*-metric space endowed with an arbitrary binary relation, *Fixed Point Theory Appl.*, Article ID 296, 2013.