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ABSTRACT: In this paper we find sufficient conditions for the existence
and uniqueness of fixed points for a class of Reich maps in b-metric space.
These conditions do not involve the b-metric constant. We establish a priori
error estimate for the sequence of successive iterations. The error estimate,
which we present is better than that the well-known one for a wide class of
Reich maps in metric spaces.
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1. INTRODUCTION

Fixed point theory has got wide applications in different
branches of mathematics. Since the work of S. Banach [3] known as
the Banach Contraction Principle, many mathematicians have
extended and generalized the results in [3]. Some of the classical
generalizations of [3] are presented in [15]. The concept of a b-metric
space as a generalization of a metric space is introduced in [6] and a
contraction mapping theorem is proved there. Since then results about
fixed points, variational principles and applications were obtained in
b-metric spaces. We will cite just a few recent results in these
directions [1, 2,5, 6, 7, 9, 12, 14, 15, 19].

An extensive study of the problem about fixed points in
different distance spaces and references can be found in [11].
Following [11] we recall some definitions and properties for b-metric
spaces.

Definition 1.1. Let X be a non-empty set and s>1. A
functional p: XxX —R is called a b-metric if it satisfies the
following conditions:

p(x,y)=0 forall x,ye X and p(x,y)=0 ifand only if
X=Y;
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p(xy)=p(y,x) forall x,yeX;

p(xy)<s(p(x2)+p(z,y)) forall x,y,ze X.
The ordered pair (X,p) is called a b-metric space (with

constant s).
Any metric space is a b-metric space with s=1. An example

of b-metric is the functional p,: Ip X Ip — R, defined by
P, (X y)=D" % —Vi|" - Itis easy to see that in this case s =2°".
Other classical example of b-metric space is R endowed with the b-
metric function p, (X,y)=|x—y|" for pe[L+o). Itis easy to see
that in this case s=2"" and for p =1 we get the metric space of the

real numbers with a metric pl(x, y):|x—y|. Another examples of

b-metric space are Orlicz and Musielak-Orlicz spaces endowed with
Orlicz and Musielak Orlicz function modulars respectively [10, 13].

Definition 1.2. Let (X, p) be a b-metric space.

a) A sequence {x,}" s called b-convergent if there
exists x e X, such that for any &>0 there exists N=N(&)eN

such that the inequality p(X,X,) <& holds true forall n> N ;

b) A sequence {x,}~

_, is called b-Cauchy sequence if

for any &£>0 there exists N =N (&)eN such that the inequality
(X, X%, ) <& holds true forall n>m>N;;
c) The b-metric space (X,p) is called complete b-

metric space if any Cauchy sequence is convergent;
d) A subset Ac X is called b-bounded if

sup{p(X,y):X y €A} <oo;
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e) If the set A is b-bounded then the number
sup {p(x, y)ix,ye A} is called its b-diameter and is denoted with
5, (A).

f) A subset Ac X is called b-closed if for any

convergent sequence {Xn}:;lCA the convergence limx, =X

nN—oo
implies X € A.
)] A b-metric function p is called continuous if for any

ye X and any &>0 there exists §=3(y,&)>0 such that there
holds the inequality ‘p(y, x)—p(Y, z)‘ <&, provided that
p(X,2)< 8. Itis easy to observe that if p is continuous and X, is b-

convergent to X then p(y,x,)—> p(Y,X).

Every b-convergent sequence in b-metric space is a b-Cauchy
sequence. If a sequence is a b-convergent in b-metric space then its
limit is unique. In general a b-metric function is not continuous [6,
11].

We will recall the definition of Hardy-Rogers maps in metric
spaces.

Definition 1.3. ([8]) Let (X,d) be a metric space. A map
T : X — X is a Hardy-Rogers map is there exist nonnegative
5
constants a,, 1=1,2,3,4,5, satisfying Zai <1 such that for each
i=1

X,y € X the inequality

d(Tx, Ty) <ad(x,y)+a,d(x,Tx)+a,d(y,Ty) +a,d(x,Ty) +ad(y, Tx)
holds.
As pointed in [8] from the symmetry of the function d it

follows that a, =a,and a, =a,. Therefore if T is a Hardy-Rogers
contraction  then there exist Kk, Kk,, k; >0, such that
k, + 2k, + 2k, <1 and there holds the inequality
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o d(Tx,Ty) <kd(x,y)+k,(d(x, Tx)+d(y,Ty)) +k,(d(x,Ty) +d(y, Tx)).

For the rest of the article we will consider maps T : X — X
that satisfy (1), where the metric d is replaced with a b-metric p.

Classes of Hardy-Rogers map in b-metric space (X, ),
where the metric d in (1) is replaced with the b-metric p, are

investigated in [12, 14, 15].
Let us point out that as far as any b-metric is a symmetric
function we can assume that for any Hardy-Rogers map, which is

defined in a b-metric space (X, p), there holds a, =a,and a, =a.
If k, =k, =0 and k; €[0,1/2) in (1) we get Chatterjea’s

map [12, 14, 15] in b-metric space. If k, =k, =0 and k, €[0,1/2) in

(1) we get Kannan’s map [14, 15] in b-metric space. If k; =0 and

k;+2k, <1 in (1) we get Reich’s map in b-metric space. Reich’s

map were introduced in [16] for metric spaces.

k, +k,

We will denote for the rest of the article o = , Where

2
k., K,,Kk, are the constant from (1), where k, =0. From k; + 2k, <1

it follows that r €[0,1).

2. FIXED POINTS FOR REICH’S MAPS IN B-METRIC SPACES
Theorem 2.1. Let (X,p) be a complete b-metric space, p

be a continuous function, T : X — X be a Reich map, such that the
inequality sup,_y {p(T”x, x)} < oo holds forany xe X . Then

0] there exists a unique fixed point say & of T ;
(i) for any x, € A the sequence {x,} " converges to &, where
X,y =TX,, N=0,12,...;
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(iii) there holds the a priori error estimate
T™) <a™sup p(Tx,x).
pl&T"x) s sup p(THxx)

Lemma 22. Let (X,p) be a b-metric space and let

T:X — X be a Reich map. Then for any xe X there holds the
inequality

) p(Tn+lX,TnX)S(?—i_kkz]p(TnX,Tn1)()

]

forany n>m=2>1.
Proof. For any x € X we get the inequality

p(T“*lx,T"x) < kip(T”x,T”’lx)+k2 (p(T n+1x,T“x)+,o(T“x,T”’1x))

and consequently the inequality (2) holds true.
Corollary 23. Let (X,p) be a b-metric space and let

T:X — X be a Reich map. Then for any xe X there holds the
inequality

k +k, )
3 TMx,T"x)<| 2—2 TX, X
@ o ) (Hz]p( )
forany n>mz>1.
Proof. After applying (2) n-times we get

2 n
p(T"%,T"x) < (kll +kk2 jp(T“x,T”‘lx) < (kll +kk2 j p(TT X T %)< < [klljkk; J 2(Tx,X).

Lemma 2.4. Let (X,p) be a b-metric space and let
T:X—>X be a Reich map, such that the inequality

SUp,,_x {p(TnX, x)} <oo. Then for any xe X and any & >0 there

exists N €N, such that the inequality p(T"x,me) < ¢& holds for

any n>m2>=N.
Proof. After applying (1) and (2) we get
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p(T™T"X) < kp(T"x,T™x) +k2(p (T"X,T" %)+ p(T"x,T™x ))
ko (T, T )4k, (@ o (Tx X) +a™ p(Tx, X))
q

< b

< p(Tnl Tml) a™ ) (Tx,x)

O AT b
e R R

After applying the above technigque (m—2)—times and using

the easy to check inequality k; <o and the equality K, - 1+i =1
M
we get
p(T'xT"x) < (kl)mp(T"mX,X)+k2[ni(k1)j(a"1j+amlj)]p(Tx,X)
) < (k) (T "mx,x)+k2[f1(kl)'am“ +a""‘§(kl)ja"‘”] p(Txx)

IN

(k)" p(T""x,x)+k, o« _(E)m (1+a™™) p(Tx,X)

[(k) [l k, i+z]+k2 i+zam]5UPnem{P(T“an)}

a™sup,, {p(T X, x)}

IA

IN

Let £ >0 be arbitrary chosen. From « < (0,1) it follows that
there exists N eN, such that there holds the inequality
£

m

“s Sup, {p(T”x, x)}

that the inequality p(T"X,T mx) <a"sup,y {p(T "X, X)} <& holds

holds for any n>N . From (4) we get

forany n>m=>N.
Proof. of Theorem 2.1 (i) Let X € X be arbitrary.

From Lemma 2.4 we have that the sequence {T”x}wl is a
n=
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Cauchy sequence. From the assumption that X is complete b-metric

space it follows that the sequence {T“x}m1 is b-convergent.
n=

Therefore it follows that there exists £ =1imT"x e X . After taking a

n—o0
limit on m — oo from the assumption that the b-metric is continuous
and using that T is Reich map and using Corollary 2.3 we get the
inequality
p(TE,€)=lim p(TE,T™x) < n|1i£r;(klp(§,Tm’lx)+kz(p(Tg,<§)+p(me,Tm’1x))): koo (TE,E)

and therefore p(T&,£) =0 i.e. & is afixed point for T .

Let suppose that there are two fixed points & # 7. Then from
the inequality
p(&n)=p(TETR)<kp(En)+K, (p(TEE)+p(Tnn))=kp(&7)

and the assumption that k; €[0,1) it follows that & =17.
(i) The proof follows from (i), because any sequence

o0

{T"XO} . is convergent to the fixed point of T, which is unique.

(iii) Let xe X be arbitrary. From (4) we have that the
inequality

p(T™XT™X)<a"sup, {p(T"x, x)}
holds for every n>m=>1 and every X e X . From (ii) it follows that
the sequence {T"x}:;1 converges to the unique fixed pointé.
Therefore using the continuity of p we get

p(&T™X)= !mp(T”x,T”‘x) <a™sup, {p(T"x, x)} .

As far as any metric space is a b-metric space, then Theorem
2.1 holds true for arbitrary metric space. If (X,d) is a complete

metric space and T be Reich map, then the a priori error estimate can
be obtained from the proof of (Theorem 1 [8])

-83-



Topumauk Ha 1Y, Enuckon K. IpecnaBcku™
®akynreT no MaTeMatrka u HHpopMaruka, Tom XVII C, 2016

m) o O

(5) d(ﬁ,T x)smd(Tx, X).

If we assume that sup o(T'x,x) < p(Tx,x) then we will

jeN

get from Theorem 2.1 the a priori estimate
(6) p(£T™X)<a™p(Tx,X).

Let us mention that in this case the a priori estimate (5) is
better, than (6). Let ge(O,p(Tx, x)) m, e N be the smallest

number, that satisfies (5) and n, € N be the smallest number, that
satisfies (6). Then

Iogig(l_a) 0975
0 m > p(TXx)| £(Tx,X) ole Iog(l—a)|_l.
loga ‘

loga ‘ loga ‘

If Kk, +2K, gets close to 1 then « gets closer to 1 and

therefore n, —m, gets closer to infinity.

We would like to point out that if the space is a metric space
than using the triangle inequality we can obtain (5) from Theorem 2.1

iii).
Example 2.5. Let us consider the b-metric space (R,pp)
for p=1. Let us define the map T :[0,+00) —>[0,+), by

,  x€[0,1)
Tx = , Which is a variation of the examples from

,  X€[l+00)

Nl N

[12]. It is easy to observe that the Picard iteration sequence X, =TX._,
converges to the fixed point x =0 for any initial point X, € [0,+c0)
(Figure 1).
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bol =

| =
F---4---0

1

Figure 1

If x,ye[0,5) or X,ye[f,+x), then T satisfies the
condition in  Definiton 14 for any Kk,k,, because
p2,(TX,Ty) = Tx=Ty|’=0.

If vye[0l) and xe[l+o0), then we get

1 1 11
X, Ty)=|—==| =|=
p,(TX,Ty) ‘ 175 ‘ 1

p

p
. The

1 p
Let us denote fp(x,y):|x—y|p+z—x +

1
Y

inequality  f (x,y)>f (Ly) holds for any xel[l,+00) and
ye[01). From

3\ (1 P 1
1-y)P+| = =-y|, O0<y<=>
1-vy) +(4j +(2 y] y<s

d-y)° +Gjp +(y—1]p, %s y<1

calculate that

. . . . 3
min f, (L y)=min {ygypn f.Ly), min f @ y)} =f, [1, Z] :

Consequently we get

it is easy to

fLy)=
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p

= pp (TX,Ty)

12N+ 2 (2,0 + 0,19, )) = 5 1, y)zifp[l,j} ;

Therefore T satisfies the condition in Definition 1.4 for

When applying fixed point theorems for approximating of a
solution of the equation Tx=Xx we usually find an initial starting

point X, which belongs to a neighborhood U of the solution &, such
that T:U —>U and U is bounded and closed. Thus the next
Corollary can be applied in a wide class of problems.

Corollary 2.6. Let (X, p) be a complete b-metric space, p

be a continuous function, A< X be a b-bounded and b-closed set,

T : A— A be Reich map. Then
@i there exists a unique fixed pointsay & of T ;

(i) forany x, <A the sequence {X,}  convergesto &, where

X, =1X,n=012..;
(iii") there  holds the a  priori error  estimate
p(£T'X)<a"s, (A).
We would like to pose an open question: Is it possible to obtain a

similar result for Hardy-Rogers maps in b-metric spaces, without
involving the b-metric constant, as like as Theorem 2.1 and [11].
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