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ABSTRACT: Censored and truncated data are frequently encountered in diverse fields including
environmental monitoring, medicine, economics and social sciences. Censoring occurs when observa-
tions are available only for a restricted range, e.g., due to a detection limit. Truncation, on the other
hand, occurs if observations in some range are lost. This work considers the analysis of time series of
counts under censoring and truncation based on first order integer autoregressive (INAR) models. The

focus is on estimation and inference problems.
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1 Introduction

Observations collected over time or space are often autocorrelated rather than independent.
Time series measurements are often observed with data irregularities, e.g., observations with a
detection limit. For instance, a monitoring device usually has a detection limit and it records the
limit value when the true value exceeds/precedes the detection limit. This is often called cen-
soring. So, censoring occurs if observations Y; are available for a restricted range of Y; arising
from aggregation or may be imposed by survey design. This is very common in various situations
in physical sciences, business, and economics. However the dependent variables can be limited
in their range as well by truncation. Truncation arises if observations Y; in some range of ¥; are
totally lost. However the dependent variables can be limited in their range by truncation. Trun-
cation arises if observations in some range are totally lost. Examples of left truncation include
the number of bus trips made per week in surveys taken on buses, the number of shopping trips
made by individuals sampled at a mall, and the number of unemployment spells among a pool of
unemployed. Right truncation occurs if high counts are not observed. The most common form of
truncation in count models is left truncation at zero. There is an extensive literature on regression
models in which dependent variables are censored or underlying distributions are truncated, see
[3] for a comprehensive review including discrete dependent variables. Nevertheless, the analysis
of time series under censoring or truncation has received little attention in the literature and regard
continuous valued processes only, see [4] and [1].

The model considered in this work is a time series of counts X1, ..., X7, generated according
to the first order integer autoregressive process

(D Xr=0oXi1+&

where the arrival process & is a sequence of independent and identically distributed non-negative
integer valued random variables, independent of X;_, with mean U and finite variance 682 and,
conditional on X;_;, @ ¢ X;_ is an integer valued random variable whose probability distribution,
denoted by g(-|x;¢) depends on the parameter & which may be a vector of parameters. Thus,
'o’ denotes a random operator, usually called thinning operator, which always produces integer
values and introduces serial dependence via the conditioning on X;_;. For a review of thinning

*This work was supported in part by the Portuguese Foundation for Science and Technology (FCT-Fundag@o para
a Ciéncia e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications,
within project UID/MAT/04106/2013.
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operators see [2]. The specifications of the thinning operator and arrival process lead to INAR(1)
models that ensure required distributional properties of the marginal distributions, namely that the
marginal distribution of X; is from the same family as &. The transition probabilities are given by

min{k,/}
(2) p(Xi|Xi—1) =P[X; = k|X,—1 =1] = Z g(jI)P & =k—j].
=0

Considering time series of counts based on first order integer autoregressive models this work
aims at giving a contribution towards this direction.
2 A truncated count model

For some reason we do not observe X; but ¥; which results from left truncating X; at a value
N. This means that a subset of the population that generated the data is unobserved. Then we
define a left truncated at N model, for Y; as

X, = aoXi_1+&
3) Y = X,iftX; >N
The transition probabilities are now

P[Xt :yt’Xt—l :)’t—l]

Yi = yilYio1 = yi1] YENLn P X = j1 X1 = i P* X1 =]

P[X;=]]

with P*[X; = j] = T PR and zero outside y;,y;—1 € [N,oo].

3 A censored count model

Censoring occurs if observations Y; are available for a restricted range due to aggregation or
detection limits. We can say that censored data are AAYaAY piled upAAZAaAZ at a censoring point.
We define a censored at N model as

X[ - OC<>(X,_1)+£,

i <
5) y, — min{X,,N}:{X” ifX;, <N

N, ifX; >N

The transition probabilities are
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PlYi=y|Yi1=y1] =
( P[X,>NI[X_1 >N|=

;%ZYSNP[Xt:ﬂXt—I :i]P* [Xt—l :i]a Vi, Yi—1 =N
PX; =y|X;—1 >N|=
LOFVP[Xz:)’z‘Xz—l =i P*[X;—1 =1, Yy <N,y-1=N
6)
( PIX, > N|X, =y 1] =
YN PX = X = v, ye=Nyi—1 <N
P[X;=y1|Xr7|=yf71] _
PX;<N|X,_1<N] —
PIXi=y:| Xi—1=y1-1]

Ve, Yi—1 <N

(TN PIXe=j1X 1 =il P* X, =]

4 Estimation procedures

Neglecting censoring and truncation in the time series hinders meaningful statistical infer-
ence, leading to model misspecification, biased parameter estimation, and poor forecasts. We study
the regression properties of the censored INAR(1) models and show that least squares estimation
of the parameters is no longer appropriate. Likelihood analysis of the censored INAR(1) processes
is developed, including maximum likelihood and maximum pseudo-likelihood estimations. Some
problems related to the censored or truncated count data models are pointed out and illustrated.
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ABSTRACT: An important challenge related to composite distribution is the estimation of their
unknown threshold. For this purpose, several methods have been proposed in the literature, yielding
different results for the same data. Therefore, in this paper we go further on and assume that the thresh-
old is uncertain, allowing it to take values in a closed interval. Based on the arithmetic of intervals, we

study the resulting model under continuity and differentiability conditions.

KEYWORDS: Composite Lognormal-Pareto Distribution, Uncertain Threshold, Interval arith-
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1 Introduction

A spliced distribution is piecewise built from different distributions defined on mutually
disjoint intervals. In particular, a composite distribution is usually built from two components:
for example, the composite lognormal-Pareto distribution consists of a lognormal density up to a
certain threshold and of a Pareto density from that threshold on. We note that a composite distri-
bution can also be interpreted as a two-component mixture of two distributions singly truncated
from above and, respectively, from below (their truncation point being the threshold itself), with
corresponding mixing weights. Such distributions are useful to model, e.g., loss data arising in
insurance because they are typically positively skewed. Therefore, the usual lognormal-Pareto dis-
tribution is well studied in the actuarial literature, starting from the paper of Cooray and Ananda
[2]. An important challenge is the estimation of the unknown threshold. For this purpose, several
methods have been proposed in the literature, yielding different results for the same data, usually
necessitating the examination of all possible positions of the threshold relatively to the data; see,
e.g., Teodorescu and Vernic [7] or the R package of Nadarajah and Bakar [4] and the references
therein. Moreover, Pigeon and Denuit [5] assumed that the threshold is the outcome of a random
variable (r.v.). In this paper, we go further on and assume that the threshold is uncertain, allowing
it to take values in a closed interval. Based on the arithmetic of intervals, we study the resulting
model under continuity and differentiability conditions. Such an assumption has the purpose to
better capture the uncertainty encountered in the data set.

Therefore, the paper is structured in two more sections: in Section 2, we recall the basics
of interval arithmetic and the form of the composite lognormal-Pareto distribution with its main
characteristics; in Section 3, we introduce the threshold of interval type and study its effect on the
parameters, the density, the distribution function and the expected value of the resulting lognormal-
Pareto model. We end with a conclusions and further study section.

2  Preliminaries

2.1 Basics of interval arithmetic

Measurement uncertainties can be directly incorporated into calculation by means of the
interval arithmetic, i.e., by using closed intervals on the real line represented as [x,x] = {x e R: x <
x < x}. Consequently, an arithmetic for intervals and interval valued extensions of functions had

*Partially supported by Scientific Research Grant DDVU 02/91 of MON and Scientific Research Grant RD-08-
75/2016 of Shumen University.
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been defined with the purpose to provide rigorous enclosures of solutions in various applications
(see, e.g., the books [1] and [3]). In the following, we recall several interval arithmetic operation:

1. addition: [x,X] +[y,y] = [x+y, ¥+, a+ [x, %] = [a+x,a+X],a € R;

2. subtraction: [x,X] — [y,y] = [x —y,X —yl;

3. multiplication: [x,X]-[y,y] = [m,m], where:

m = min (&)_’JQ’;XX,X)’) ;M = max (&X?@;

V,%5) ;

a 63 = lax,ax] ,a>0
=) Jax,ax] ,a<0

2.2 Composite lognormal-Pareto distribution

We shall use the composite lognormal-Pareto density definition given by Scollnik [6]:

1 _%(ln)ﬁg)z
N TENY ° 0 <0
M fln,0,a,0,r) =14 "rovame (L) 0<x<
(1—”)% x>0,

where 0,0,a > 0 and u € R. Also, ¢ and ¢ denote the standard normal density function and,
respectively, distribution function. Imposing the continuity condition f(0_) = f(6) leads to:

,l<1n97u>2
e 2 c

" aov/amo (Re)

-1

r(6) =

We note that r(6) is an increasing function in 8. Moreover, a differentiability condition is usually
imposed, i.e., f/(6_) = f/(0.), yielding:

In6—pu
c

2)

=ao,

from where we obtain:

3) r:(l—i—m)l.

acd(ac)

The distribution function of the composite lognormal-Pareto is given by:

r¢<m%> ,0<x<0
(4) Fxp,0,a,0,r) =14  o("%*) -

r+(l1—r) (1 — (g)a> x> 0.

The expected value of this composite distribution exists only for a > 1 and is equal to:

a2 0
——e*tT (1) ?

¢(ao) a—1
_44 -
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Composite lognormal-Pareto distribution

Remark 1. According to the remark in the introduction, we can rewrite model (1) as a two-
component mixture, which, in terms of r.v.s, is expressed as

Z=IX+(1-1},

where I is a Bernoulli (r) random variable, X is a lognormal distributed r.v. truncated from above
in 6, while Y is a Pareto r.v. defined for x > 0.

3  Composite lognormal-Pareto with interval type threshold

We now assume that the threshold 0 is of interval type, i.e., 8 € [0, 60]. From condition (2)
we note that if 6 is of interval type then at least one of the other parameters must also be of interval
type. Considering the meaning of the parameters, we assume that p, the lognormal parameter
related to the mean, is also of interval type, while the parameters ¢,a are single values. Since
p =1n6 —ac?, the corresponding interval for i results from the interval of 6 as u € [u, ], where

U=1Inb— aGZ,H = In 6 — ac?; therefore, we shall omit u from the notation. From formula (3),
we also note that since a, o are now constant values, r is also constant, so we also omit it from the
notation.

We start by noting that when 6 is of interval type, we no longer have a proper distribution,
but a bundle (or fascicle) of composite distributions. Let us now have a look as some density
components of this bundle.

In Figure 1, we plotted the density (1) fora=0.5,0 =1 and 0 € {2;2.3;2.5;2.7;3} C [2,3].
In this case, r = 0.4955, while m € [0.1932,0.5986].

Q=2

©=3

A
TP 0=25
IR
f N 0=23

ﬁ /' \\ 0=27

0.1

Figure 1: Density shapes for 6 of interval type

We shall now see some properties of the resulting fascicle of distributions.

Proposition 1. When 0 € [0, 0] and x > 0 is fixed, it holds that
i) The density f(x;0,a,0) is also of interval type;

it) The distribution function F(x;0,a,0) is also of interval type;
iii) The expected value E(o,a,0) = E(f) is also of interval type.

Proof. i) In this case,

¢ ( 1nx—ln69+a0'2 )
(©6) f(x:0,a,0)={ ""xaplao)  V<*¥=0
(1— r)fai“ , x> 0.
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Since x is fixed and we vary 6 € [0, 6], we have three cases:
Case 1: When x < 6 < 0 < 0, we use formula:

(P( lnx—an_O—O—an )

x0¢(ao)

f(x;0,a,0)=r

Y

which is clearly continuous in 8, hence f(x;0,a, [0, 6]) is also an interval.
Case 2: When 6 < 6 < 6 < x, we use formula:

af?
f(x;0,a,0) = (1 _F)W’

p— aeu

which immediately yields f(x;0,4,[6,0]) = |(1—r) 5, (1 —7)

ab"

ya+l

Case 3: When 8 <x < 0, we have two subcases: if 6 < 06 < x, then we use the second formula of
equation (6) and obtain an interval, while if x < 6 < 6 we use the first formula of equation (6) and
obtain another interval. We prove that these two intervals overlap. More precisely, we prove that
we have equality at the limit 8 = x, i.e.,

Inx—Inx+ac?

o) ax? ¢(ao) a
7 g =(1— & =(1-r)-.
@ : x00(ao) (1=r) xatl rxG(b(aG) ( r)x
To prove this we insert the formula (3) of r and obtain:
¢ac) _ ao¢(ac)  @(ao) _ ¢(ao) a
xo6p(ao) aocp(ac)+¢(ac) xop(aoc) acd(ac)+@(ac) x’
while
a acd(ac) a ¢(ao) a
(I—r)—=(1- - = -—,
X acp(ac)+¢@(ac) ) x acP(ac)+@(ac) x
i.e., the equality (7) holds, which completes the proof of (i).
ii) Based on the distribution function’s formula:
¢ (ln)C71no?+aO'2)
F(x;6,a,0) = r =) ) 0<x<6
r+(1—r) <1— (g) ) x>0,
the proof is very similar with the above one, hence we omit it.
iii) For a > 1, we rewrite:
r 2, o2 ab
E 0) = In6—ao +5 1 — ) —
which is continuous and increasing in 6 and, clearly, E(0,q,[0,0]) = [E(0,q,0),E(0,4,0)].
This completes the proof. [

In Figure 2, we plotted the expected value for 6 € [1,3],0 = 1 and various a € {1.5,2,3}.
In Figure 3, we plotted the expected value for 6 € [1,3],a = 2 and various ¢ € {0.5,1,1.3}. We
note that both plots support the conclusion of (iii) in the above proposition.
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a=1.3

a1

Figure 2: Expected value for 0 of interval type and various a

15 o5

o=l

o=1.3

Figure 3: Expected value for 6 of interval type and various o

4 Conclusions

In this paper, we studied the effect of an interval type threshold on the composite lognormal-
Pareto distribution and concluded that the density, the distribution function and the expected value
also become of interval type. Because of the restrictions imposed by the continuity and differen-
tiability conditions, we think that this study should be extended to the situation where the differen-
tiability condition is relaxed. Moreover, as further work, we intend to study the same distribution
under the assumption that the threshold is a fuzzy number and to apply the results on some real
data.
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comments.
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ABSTRACT: The paper considers an example of reducing a bivariate Compound Poisson risk
process with common shocks to an univariate Cramer-Lundberg risk model. Then using the results
about Compound Poisson risk model the main numerical characteristics and distributions related to the
new model are obtained. Analogous approach can be applies for any number of compound Poisson
processes. It can be useful also in renewal theory or queuing theory for simplifying systems or building

stochastically equivalent models.

KEYWORDS: Multivariate risk models, Common shocks, Cramer-Lundberg risk model.

1 Introduction

The theory of Compound Poisson risk processes origins since the works of Filip Lundberg
[9] and Harald Cramer [3] and finds good applications nowadays. In 1967 Marshall and Olkin [10],
[11] investigate a bivariate Poisson model with dependent coordinates. They lay the foundations
of multivariate models with common shocks. Particular cases of such models are considered for
example in Cossette and Marceau [2], or Wand [19]. In any of them the task for characterising
of total claim amount distribution reduces to calculations of multivariate compound distributions.
Recursive algorithms for bivariate compound distributions of Panjer’s family are obtained e.g.
in Panjer and Willmot[13, 14], Hesselager [12] among others. Sundt and Vernic [16, 17, 18]
generalize these recursions to the multivariate case. Recently Jordanova and Stehlik [8] show that
in many cases these multivariate risk models can be reduced to classical Cramer-Lundberg model.
Here we consider an example of merging of Compound Poisson processes. More general results
could be seen in Jordanova and Stehlik [8].

The organization of the paper is the following...

Along the paper L means independent, HPP(A ) is an abbreviation of "homogeneous Poisson
process with intensity A > 0", g¢ (x) = EZ* is the probability generating function of the random
variable & and 29:1 = 0. The independence between the summands and the number of summands
in the following random sums can be relaxed without changing the final results if we assume that
the compounding distributions describe the distribution of the summands, given the number of
summands.

2 Description of the model

Consider a risk process R consisting of two dependent types of polices. The dependent
counting processes M| and M, of both types are compound Poisson process By, = {By(t) : t > 0},
k = 1,2 with common shocks, described by independent compound Poisson process By = {By(?) :
t > 0}. More precisely for all r >0

(D) M, (t) = By(t)+Bo(t), My(t) =Ba(t)+Bo(t),

*The author is grateful to the bilateral projects Bulgaria - Austria, 2016-2019, "Feasible statistical modelling for
extremes in ecology and finance", Contract number 01/8, 23/08/2017, WTZ Project No. BG 09/2017, and the scientific
project RD-08-125/06.02.2018, Shumen University.
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where the processes By, B and B, are independent, and for k =0,1,2,

Ny (
(2) Bi(t) = Y Nii» Nk ~ HPP(Ay), gk(z) = EZ™, 2> 0, {m}is LN,
i=1

Nk1,Nk2, --- iIndependent identically distributed (i.1.d.), and 111 L 121 LNo1.
S ={S(¢) : t > 0} is the total claim amount process. For all # > 0

3) S(t) = Si(t)+8a(1),
By (1) By(r)

(4) Sit) = Y, Yu+ Y Yo, {Yu}ii,LlBi, k=0,1,
i=1 i=1
By(t)

SH(t) = Z Yai+ Y Yoi, {Yu}i,LBi, k=0,2.
i=1
Yk17Yk27 lld, and YOIJ—YIIJ—YZI-
R = {R(t) : t > 0} is the risk reserve process and for all > 0

(3) R(t) =u-+ct—S(t),

where u > 0 is the initial capital and ¢ > 0 is the premium income rate.

3  Stochastic equivalent models

In this section first we obtain a stochastically equivalent presentation of the bivariate counting
process { (M, (t),M(t)) : t > 0} which shows that it is a particular case of multivariate compound
Poisson processes of type I, discussed in Sundt and Vernic [17, 18]. Then, in Theorem 2 we derive
the stochastic equivalent presentation of the processes (S1,S5,) as a compound Poisson process of
Type . Finally, in Theorem 3 we describe a stochastic equivalence presentation of the risk process
R which allows us to state that this is a Cramer-Lundberg (C-L) risk process.

Denote by A = A + A, + A9. In order to formulate our main results let us define a random
vector (I1,1,1p) with probability mass function (p.m.f.)

1 Ao
—,dP(l1=0,L=1,Ip=0
1 (h=0,L=1,Ip=0)= )L, T
and zero otherwise. Assume random vectors (I11,051,1o1), (l12,02,102), ... are i.i.d. with p.m.f.
(6) and (N11,M21,Mo1), (M12,M22,M02), -.- are i.i.d. with independent coordinates with probability
generating functions (p.g.fs.) correspondingly g1, g2,80. Denote by N ~ HPP(A),

6) P(I; =1,1,=0,I)=0) = P, =0,L,=0I=1)=

=z

)
(7) Al(t) = (111n11+1017701)

2N
=
~— =

(8) AZ(t) — (1217721 +10ﬂ”lol)

N
I
—

Assume N, (I11,121,101), (I12,122,102), ... and
Theorem 1. The bivariate processes
finite dimensional distributions.

—~

N11,M21, Mot ), (M12,M22,Mo2), --- are independent.
M;,M;) and (A1,A») coincide in the sense of their

~~
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Proof: All processes (M;,M;) and (A,A;) have homogeneous and independent additive
increments and they start from the coordinate beginning, therefore in order to prove their stochas-
tic equivalence it is enough to prove equality of their univariate time intersections. Due to the
uniqueness of the correspondence between the probability laws and their p.g.fs. it is enough to
derive equality between the p.g.fs. Consider r > 0, z; > 0 and z > 0. The definition and the mul-
tiplicative property of p.g.fs., (1), (2), and the well known form of the p.g.f. of compound Poisson
processes imply

E [lel’h(f)ng(f)] - E [Zfl([)+BO(t)Z§2(t)+BO([)] —E [Zfl(l)} E [Zgz(l)} E [(Z]ZZ)BO(I)]

N

®_ No() No()
— E |:Z]Z, 1 nll:| E |:Z§l—l n2l:| E [(lez)zll 7701}

= exp{—Mt[l —g1(z1)]yexp{—Aat[1 — g2(22)] }exp{—Aot[1 — go(z122)]}
= exp{—(M++A)r—Aitgi(z1) — Aatga(z2) — Aotgo(z122) }

= exp {—(Al + 2+ Ao)t [1 — %81(11) - %gz(zz) - %go(mzz)} } -

The definitions (7), (8), the formula for double expectations, the independence between N and the
other components of the processes A and A, entail

N(t) N(t)
A A i—1 uimitoimo:) X, (in2i-+loiMo
E [Zl l(t)Zzz(t)] _ F {ZIZ'_I (Iim1i+oimno )ZZZ | (Rima2i+1oiMo )}

_ i E [Zli?zl(11iﬂ1i+10i770i)z2?:1(12i712i+10i770i)} P(N(t) =n)
n=0
By the multiplicative property of p.g.fs. and (6),

9) E [Z?l(l)zgz(l)} _ io{E [Zilmn-i-fm7101222171214-1017701} }nP(N(t) =n).

Now (6) and the total probability formula imply

. A A
(10) E [zlll’r“1“01"01421"21“01”01] = Tlgl(ZI) + ngz(zz) + %go(mzz).

Therefore the fact that N(z) ~ HPP(At) entails

) At = [ 2 x '
E[z?‘()zg()} = ’;){%gl(mﬁrfg2(12)+%g0(2122)} P(N(t) = n)

= exp{—lt [1 — %g1 (z1)+ %gz(@) + %80(21&)} }

which is exactly E [zzlwl (t)zlzvb(t)] , and completes the proof.

Theorem 2. The bivariate total claim amount processes (S1,5>), described in (5) is a com-
pound poisson Process of type I (which means with one and the same number of summands). It is
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stochastically equivalent to the process (S3,S54), where

N() uin Non

(11) S3(t) = Y [Ln Y Yii+1on Y Yoi|, >0,
n=1 i=1 i=1
NO) [ mo Non |

(12) Sa(t) = by Y Yoitlon Y Yoi|, >0,
n=1 i=1 i=1

where (I11,I1,1p1) is a vector with distribution (6) and the other random elements are the same
as those described in (6), (7) and (8). The equivalence is in the sense of their finite dimensional
distributions.

Proof: All processes have homogeneous and independent additive increments and they start
from the coordinate beginning, therefore in order to prove their stochastic equivalence it is enough
to prove equality of their univariate time intersections. Due to the uniqueness of the correspon-
dence between the probability laws and their Laplace-Stieltjes transforms(LSTs), it is enough to
derive equality between the (LSTs).

Consider t+ > 0, z; > 0 and zp > 0. The definition of LSTs., (5), and the multiplicative
property of LSTs, the formula for relation between the LST of compound distribution and LST of
summands and the number of summands, the well known form of the LST of compound Poisson
processes, (2), (1) imply

Ee—aS1)-2%0) _— g 2?211@ Y1i—(z1 +22)Zf£1<t> YOi_ZZZl‘B:ZI(I) ot

— Ee @ Z?:ll(t) Yipe—(aita) 2?:010) Wipe—2 Z?:zl(r) Yy
= 8B(t) <Ee—Z1Y11 )gBo [Ee‘(m-i—zz)Ym]ng(t) (Ee_Y21 )
e_)tll[l_gl (Ee~stn )}e_am{l_gO[Ee*(Zlﬂz)Ym}}e_lzt[l—gz(Ee*zzYzl )l

o~ Ot aatday {1=[ G (B4 B gg[EeCreaalon] 1 R gy (Eem2) | |

From the other side if we consider z3 > 0 and z4 > 0, the definitions (11), (12), the formula
for double expectations, the independence between N and the other components of the processes
S5 and Sy entail

N N
Ee3530)-uSs(t) _ g3 an {Iln Y YiiHlon X% YOi] -2 2,;’1) [IZn Y2 Vit £ Y()i]
b n
= Z {Ee—Z3111 2177:111 Y1i—(z3+z4)In Z:E% Yoi—zal1 Z:E} Y2i} P(N(l) _ n)
n=0

Now (6) and the total probability formula and the formula about the relation between the for LST
of a compound, the LST of the summands and p.g.f. of the number of summands, imply

Uin Not Upa
Eexp{ —z3l1 Y Yii— (za+z4)lo1 Y Yoi—zala1 Y Yai p =

i=1 i=1 i=1

_ %Ee—m Ry + %Ee—(a—ku)zln_‘)} Yoi 4 &Ee_uz?j% Yoy
A 3
- Tlgl (Ee—st11> + %gz(Ee(ZHM)Ym) + ngZ(Ee*@Yn)
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Therefore the formula for p.g.f. of Poisson distribution entails
Ee 350 -usSa)  _ v [ M vy M0 —(2z3+24)Y0i M —2uYa; ! _
e = ) Tgl(Ee )+ ng(Ee )+ ng(Ee )¢ P(N(t) =n)
n=0

e—ll{l— [%gl (Be 2811 )+ 20 go[Fe~ (31014 22 g5 (Ee 24721 )] }

which is exactly Ee~%151 (1)=22%2(t) 1n this way the proof is completed.
Now we are ready to say that the risk process R, defined in (5) is a C-L risk process.
Theorem 3. The risk process, described in (5) is stochastically equivalent to the process

N(t) Min Ton M2n
R(t):u—l—ct—z IanYIi+2IOnZYOi+IZnZY2i , t>0.
n=1 i=1 i=1 i=1

The proof of Theorem 3 follows immediately from the definition (5) of the risk process R,
the definitions of S, S1 and S5, (see 4, and 5) and Theorem 2.

4 The characteristics of the risk model R

In this section using the well known results about the C-L risk model we obtain the numerical
characteristics, conditional distributions and probabilities for ruin of the risk model (5).
Denote by

T(u) =inf{t >0:R(t) <O|R(0) =u},u > 0,inf = oo, the time of ruin with initial capital u > 0;
y(u) = P(t(u) < o|R(0) = u), the probability for ruin in infinite horizon;
0(u) =1—y(u), the probability for survival in infinite horizon;

A = A; + A2 + A3 is the intensity of the merged N(¢) ~ HPP(A). Then it is the parameter of
the exponential distribution, which models the inter-arrival times in the merged risk process
presentation.

The mixed claim size in the merged risk process presentation are

Nis TNos Tas
Y, ;:hsZYli+2IOSZY0i+I2sZY2i7 s=12,..
i1 i=1 i=1

Note that these r.vs. are i.i.d.

In the next theorem using the results for the Cramer-Lundberg model (see e.g. Grandell [6],
Gerber [5], Embrechts, Klueppelberg, Mikosch [4] Rolski, Schmidli, Schmidt, Teugels [15]) we
characterise the risk process R.

Theorem 4. Consider the risk model R, defined in (5). Denote by

u=MEM)EY11)+2AE(Mo1)E(Yo1) + A2E(N21)E (Ya1).
Then

i) In case when the expectations are finite, the safety loading is p = ﬁ — 1 and the net profit
condition is ¢ > U.
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ii) In case when the expectations are finite and the net profit is satisfied y(0) = %
iii) The general formula for the Laplace - Stieltjes transform of d(u) is

/ (S) — S(C—‘LL)
0 cs—A—Ag1(Ee™s"1) — Argo (EesY21) — Aogo(Ee~2s%01)

iv) The distribution of the deficit at the time of ruin, given that ruin with initial capital zero happen
has the following distribution

P(—R(7(0)+) < x|1(0) < o0) =

R0 Lo (B (B )

v) Given the second moments exist,
E(—R(7(0)+)|7(0) <o) =

2
{ Z, E(Mia)D(Yir) +E (M) [E(Yar )] + 420 [E(not)D(Yor) + E (1)) [E (Yor))?] } :

E((0)|7(0) < o) =

Yot A [E(Mia)D(Yar) +E(m) [E (Yer)]*] +420 [E (1101)D(Yor) + E(ng,) [E (Yor)]]
a uic—p) '

vi) The joint distribution of the severity of (deficit at) ruin and the risk surplus just before the ruin
with initial capital zero is:

P(=R(7(0)+) > x,R(7(0)—) > y|7(0) <) =

2 (2 x+y Tk1 o TMoi
k
= - Y, >y dy / YOl >
LBz [r(Fa=3)e
vii) The distribution of the claim causing ruin is
P(R(7(0)—) = R(7(0)+) < x|7(0) <o) =

Ts1 o1
m / ydP(ZYsl <y +—/ ydP()_ Yor <y).
s= l i= i=0

viii) If the distribution of Y] is domilatetly varying which means that

limsup 1 P(EM Y1 < %)+ PP Y1 < 3)+AP(L% Yo < %)
x—y00 l]P(Zn” Y11 <x) —1—1213(2”2' Y21 <x) —|—).0P(an Yo1 < )

then
lim v L
u—eo [ [213:1 AP (an' Yig > y)} + AP (an Yo1 2 %)dy c—H
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ix) For this model, the small claim condition means that there exists the Cramer-Lundberg expo-
nent € which is the smallest possible solution of the equation

A1 —gl(Eegyn)] + Ao[l —go(EeZSYOI)] + (1 —gz(EeSYZI)] = CE.

In that case y(u) < e %" and choosing a € (0, 1) we can find appropriate premium income
rate ¢, in such a way that y(u) < c.

If additionally

2 A oo N1 oo o1
Z —k/ xe® P ZYkl >x|dxp+ @/ xe** P Yo1 > Nax< oo,
=1 | # /0 i—1 HJo i=1 2

then the following Cramer-Lundberg approximation of the probability of ruin holds

. C _ u
lim ey (u) = '
. v (u) e {Zl%:] M [ xexP (Z?:kll Y > x) dx]+ Ay [y xexP (2177:011 Yo1 > )_26) dX}

Scetch of the proof: The Total probability formula entails that the c.d.f. of Y7 is

)Ll N1 12 21 No1

(13) Fy,(x) = 7 P(Y v <x)+ 7 P() 1a <x)+%P(Z Yo1 < §>
i=0 i=0 i=0

Using the double expectation formula we obtain their mean and LST

A 2 A
EYl = TIE(TIIS)E(YH) + T%E(nOs)E(YOI) + TZE(TIQS)E(YH) = %,
=¥ _ 7(,1 @gz(Ee—sYﬂ) + %go(Ee_ZSYOI).

s —SY“
A’gl<Ee >+ A

In order to complete the proof we just replace these expressions in the well known formulae
for the C-L model.

Ee

5 Conclusive remarks

Due to their feasibility risk models with dependent classes of business have recently attracted
much attention is scientific literature. Although in general multivariate case with common shocks
the formulae for their characteristics are huge, here using the bivariate model we show that these
models can be reduced to the C-L case. This allows us to use already known results which reason-
ably simplifies the calculations. In analogous way we can reduce similar multivariate (with more
then two classes of business) risk models with arbitrary common shocks to C-L model. Many
particular cases can investigated. For example the numbers of claims in different groups can be of
any discrete integer probability type. MNo1, 111, 121 can be constants, Poisson, Geometric, Negative
binomial, Truncated geometric, Logarithmic, Binomial ets. We mention these, because there are
explicit formulae and Panjer’s type recursions (see [15]) for their compounds. These three r. vs.
are not obligatory identically distributed. In case when the number of summands is governed by
some distribution which has no investigated compound then higher-order asymptotic expansions
presented e.g. in [1] and the references there in can be very useful. The experience of the author
shows that the Monte-Carlo method is flexible, easy to implement, not so time consuming, and
gives good results. See e.g. [7].
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A VISUALIZATION AND A SHAPE CHARACTERISATION OF A
CLASS OF CYLINDRICAL HELICES *

GEORGI H. GEORGIEV, RADOSTINA P. ENCHEVA, CVETELINA L. DINKOVA

ABSTRACT: In this paper we investigate parameterizations of cylindrical helices generated
by unit speed plane curves. We also examine properties of their focal curves. Illustrative examples of

cylindrical helices with periodical curvature and torsion are presented.

KEYWORDS: Cylindrical Helix, Curvature, Torsion, Focal Curve

1 Introduction

Constructing a new curve from a given regular curve is an important task in the classical
differential geometry. In this paper we examine cylindrical helices generated by unit speed plane
curves of class C? and their focal curves. Any unit speed plane curve is uniquely determined up to
Euclidean motion of E? by its curvature function K. Every plane curve with a non-zero curvature
is fully determined up to direct similarity by another function K called a shape curvature. For
any regular parameterized curve @ = @(r) : I — E? the shape curvature function K(¢) can be

~ d 1 da
expressed by K (1) = % (m) / =
determined up to Euclidean motion of E3 by its curvature k7 > 0 and its torsion k. If k1 > 0
this curve is fully determined up to direct similarity by other functions k; and k» called a shape
curvature and a shape torsion, respectively. Any regular parameterized space curve
y = ¥(t) : I — 3 has a shape curvature and a shape torsion defined by functions

d(_1_
K (1) = dl,gi(lt(;))

dr
The geometry of curves with respect to an orientation-preserving Euclidean motion is completely
presented in [6]. For instance, one important theorem proved in this book is

. Analogously, any unit speed space curve is uniquely

and k(1) = x(t)

(1 ()

Theorem 1.1. [6, p.137](Fundamental Theorem of Plane Curves) A unit-speed curve ¢ : I — E?
whose curvature is given piecewise-continuous function K : I — R is parameterized by

2) { o(s)=([cosO(s)ds+d, [sinB(s)ds+d>),
0(s) = [K(s)ds+ 6,

where dy,d», 0y are constants of integration.

Elements of the theory of curves related to direct similarities are given in [2], [3] and [4].

K’z(l‘)

There are special space curves called cylindrical helices with the property K—(t) = const. These
1

curves are studied in [7] and [8]. There exists a well-known construction for obtaining a new space
curve from a given space curve.

*Partially supported by Scientific Research Grant RD-08-111/05.02.2018 of Shumen University.
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Definition 1.1. /6, p.241] A focal curve (or an evolute) of a regular C*-space curve ¥ : (a,b) — 3
with a nonzero curvature and a torsion is the curve given by

(3) Cy(t) = ¥(t) +cr(t)m () + 2 (t)ma (1),

where ny is a principal unit normal vector field of ¥, ny is a binormal unit vector field of y. The
coefficients c|(t) and ¢, (t) are smooth functions called focal curvatures of ¥, given by

@) S PR A S .10 o

Ki(r)’ |9 s (1)2ka () | | wey(t)

where k1 (t) and K, (t) are the curvature and the torsion of .

In this paper we describe a construction which is divided into three steps. First, we obtain
a cylindrical helix from a given unit speed curve in the xy-plane. Second, we determine the focal
curve of the obtained cylindrical helix. Third, we study the orthogonal projection of the focal curve
on the xy-plane. This scheme applied to plane curves with periodic signed curvature is presented.

2 Parameterizations of cylindrical helices

Let & = 0(s), s € I C R be a unit speed regular C3-curve in the Euclidean plane E? = 0¢) €,
with a vector parametric equation @(s) = (x(s),y(s),0) parameterized by an arc-length parameter
s € 1. The signed curvature of & is

(5) K=<a" Jja' >=x'(s).y"(s)—x"(s).y'(s),

where J is the complex structure of R? and "< -,- >" denotes the scalar (or dot) product of two
vectors. We define a new space curve ¥ = ¥(s), s € I C R in the Euclidean space E* = 0¢)€,€3
with a parametric representation

(6) ¥(s) = (x(s),y(s),as +b) = a(s)+ (as+ b)és, a,b = const

This curve lies on the generalized cylinder Sy with a base curve @(s) and rulings parallel to z-axis.
The curvature and the torsion of ¥ are expressed by the next lemma.

Lemma 2.1. [5, p.5640] Let Y be a space curve with a parametrization (6). Then the Euclidean
curvature K1 and the Euclidean torsion K, of Y are given by

K| o — a.K
2 = 1—}-612’

7 K1 =
() 1 1+a27

where K is the signed curvature of Q.

Observe that for the curve ¥ the condition characterizing cylindrical helixes k,/k; = const
holds. More precisely, ¥ is a cylindrical helix with a constant curvature ratio k/k] = €a, where
€ = sign(K). In what follows we will call ¥ a cylindrical helix generated by the plane curve
a. Moreover, this cylindrical helix is a geodesic curve on Sy. Analogous condition for the focal
curvatures c¢; and ¢ of ¥ can be written in the form ¢ .c{ —eav/'1+a?cy = 0. The next statement
gives a relation between focal curvatures of ¥ and the signed curvature of o.
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Theorem 2.2. Let & = a(s), s € I be a unit-speed C>-plane curve in E? with a signed curvature
K #0. Let ¥(s) be a space curve given by (6). If ¢| and c; are the focal curvatures of Y, then

1+a? l+a23.K'

(8) cl = and ¢, = — CKP

where a is the constant slope of 'y with respect to €;.

Proof. From (4) and (7) we get

1 144 L5 (s) Vita K’
ci(s) =—= and () = —— =— -
k1K | (Pt @lK]

]

Now, we give a useful relation between the shape curvature and the shape torsion of the
cylindrical helix and the shape curvature of the generating plane curve.

Corollary 2.2.1. Relations between the shape curvature K| and the shape torsion Kz of the cylin-
drical helix ¥ generated by a unit speed C3-plane curve & and the shape curvature K of & are

K =V1+a*K| and ¥ = ea.

Proof. In [2, p.285] it was shown that the shape curvature of & is K = (1/K)’. From equations (7)
and (1) we conclude that the shape curvature and the shape torsion of ¥ are given by

d (1
- &ly) 1 d(1+a2> ( )
K = — V1+ad? V14a?|K|and % = — =
T T Vivaeds K] Hlandie =

]

Corollary 2.2.2. A relation between the focal curvatures of the cylindrical helix 'y with a paramet-
ric equation (6) and the shape curvature of the base unit-speed C>-plane curve @ is

2 \/H—azk«

C1 a

9)

Proof. From (8) the ratio of the focal curvatures is

2 \/1—|—a2K/_\/1+a2<1>/_\/1—|—a2§

K

1 a K2  a a
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3  Focal curves of cylindrical helices generated by unit speed plane curves

Theorem 3.1. Let & = a(s), s € I be a unit-speed C-plane curve in E? and let K # 0 be the
signed curvature of Q. Suppose that ¥(s) is the cylindrical helix defined by (6). Then the focal
curve Cy of ¥ possesses a parametrization

(1+a2)K’T+ 1+a2N+ (as+b)ak?® — (1 +a*)K'_,

(10) Cy(S) = a(S) + e X K3 €3,

where T and N form the Frenet frame of .

Proof. First, we find the Frenet frame t, ny, ny of ¥. From equation (6) and the structure equations
of & we obtain the cross vector products

dy d*y

X2 (a'+aé)xa”"=(a'+aé;)xKJa'=K(a' xJa' +aé;xJa')=K(é3—a.a')
S S
dy d° d
C%xgg>wﬁek@yﬂa@xmqﬂag:myﬂﬁaxw:Ku+ﬁww
d d f
Their norms are d—'y X — || = |K|V1+a? and av ., H 1+ a?)|K|. From the
S ds

Frenet formulas with respect to an arbitrary parameter we get the umt principal normal vector

dy Y dy
(wXMJX _K(1+d)Ja’

ay d*y H (14+a%)|K

(11) n = —eJa’,

ds ds2

and the unit binormal vector

(12) n, — ZZ X dg, . K(é3 —a.a’) _ 8(33 _a‘a/)
V] wvize T Ve
Having in mind T = &’ and N = Ja&' and using (3), (8), (11) and (12) we obtain (10). u

Definition 3.1. The focal curve Cy of ¥ with parametrization (10) is called an associated space
curve of a unit-speed plane curve o with a nonzero signed curvature.

The curvature and the torsion of the associated space curve can be expressed in terms of the
signed curvature and the shape curvature of o.

Theorem 3.2. The curvature Ky and the torsion K, of the associated curve Cy of the unit speed
C3-plane curve & with a signed curvature K # 0 and a shape curvature K are given by

a|K| ak

(13) K| = K= _
: (1+a2)a2+(1+a2)(%)/‘ ’ (1—|—a2)<a2+(1+a2)(%)/>
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Proof. Equation (10) can be written in the form

1+a®)K.. 14+d2
( +I?) T+ ;a N+((as—|—b)+

e
(14) Cyls) = afs) — M)a.

aK

Then, its derivatives with respect to the arc-length parameter s of & are

dC, 1+a? (K -

i = —aT

= (5 (7))@

) N/ N\

T~ <a+—“;f’2 (%) )(—aK.N)+‘+T"2(§) (& —aT)

d3Cy > > (KN, s : > (K 1+a® (K\" .

a

The cross vector product and the triple scalar product are

dCy  &°Cy _ k([ 2 N[ K "\’ o,

T X e —;(a +(1+a )<E) ) (T +aés),

dCy d’Cy d’Cy acy d’c, d’c, 2 K :
s a? dy ~ds X @ ds T a ( +(1+a )(E) )

and the norms of the first derivative and the cross vector product are

(15)

(16)
dCy|| _Vi+a K\'| ldCy, d*Cy|| K| ) » (K\'\?
1 —ftx — | ="—V1+a? 1 — )
H a+(1+a )(K> H 1 X —Vlta a“+(1+a%) e
H acy  &°Cy aC; €, d°C;
ds d52 ds _ds ds® ds’
From K; = and equations (15), (16) we get (13). ]
‘ dCy Hdcy d2Cy
s

Corollary 3.2.1. The associated curve Cy of the unit speed C3-plane curve @ is a cylindrical helix.

Proof. From (13) we have

~\/
where € = sign(K),0 = sign (a2 +(1+a?) (%) ) Hence the associated curve is a cylindrical
helix. ]

Theorem 3.3. The shape curvature K\ and the shape torsion K, of the associated curve Cy of the
unit speed C3-plane curve o with a signed curvature K # 0 and a shape curvature K are given by

2y S RNM
(17) K, = Ta K+ (&) — and K= —
a a2+(1—l—a2) % Ea
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Proof. From (13) we see that the first focal curvature of Cy is equal to

@+ (1+a?) (g)/

where the shape curvature K = (1/K) of &t and (K/K)' = (3K’2 — KK"") /K* are smooth functions
depending on the arc-length parameter s of ¢. After differentiation of (18) with respect to s and
some calculations we get

1 1+d?

18 Ci=—=

)

dCi(s) l1+d*|~ > (K\' 14+a% (K"
(19) P K((l1+a%) X +a° |+ © \x
~ dC dC
From &, — 410 /H Y — K, /K and (19), (16) we obtain (17). N

Definition 3.2. The orthogonal projection of the associated curve Cy on the plane E? = Oxy is
called a generalized focal curve of the plane curve @ and denoted by PB.

From equation (14) we deduce that the generalized focal curve of & is determined by

1+a®>)K + 1+a®
%ajLJraJa.

(20) B(s) = a(s) -

4  Applications

4.1 Generalized focal curve of cycloid

Let we consider the cycloid @(t) = (c.(t +sint), c¢.(1 +cost),0), ¢ = const >0,t € R.
The arc-length parametrization of one hump of the cycloid @ is

V16c2 — 52 16¢% — 52
1) as) = (Sg# +2carcsin (41) % 0) _dc<s<4c
C C C

The natural equation of the above cycloid or the so-called Cesaro equation of that plane curve is
R? + 5% = 16¢?, where R = 1/|K|. Then, from (6) the corresponding cylindrical helix has a constant
speed parametrization

V16c2 — 52 16¢% — 52
(22) Y(s) = W C T | ocaresin (i),#,as—kb
8c 4c 8c

and from (10) the associated curve of @(s) has constant speed parametrization

71602 — §2 16 2_ 2
8c 4c 8c a

Finally, the generalized focal curve B of @(s) is also a cycloid with an arc-length parametrization

16¢2 — 52 16¢2 — §2

It is obvious that the curve B can be obtained from the curve @ via translation determined by the
vector p = (0, —4c(1+a?),0).
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Fig. 1. Cycloid @ in red, generalized focal curve B in purple, cylindrical helix ¥ in blue, associated curve Cy of @ in
green

4.2 Generalized focal curve of closed plane curves with periodic signed
curvature

Let @ = a(s) be a unit speed plane curve with a periodic curvature K(s) = ™ _sin s, where
n
m € Z,n>1,n € Nand (m,n) = 1. Such a curve is introduced and studied in [1]. Then by (2) the

T
function 0(s) becomes 0(s) = [ K(s)ds+ 6y = 5 +coss+ s and a unit speed parametrisation
n

a(s) = /cos (E—Fcoss—f—@s)ds,/sin <E+coss+ﬂs)ds,0 .
2 n 2 n

From (6) it follows that the corresponding cylindrical helix has a constant speed parametrization
T T
¥(s) = /cos <— +coss+ @s>ds,/sin (— +coss+ ﬂs)ds,as—f—b
2 n 2 n

and from (10) the associated curve of €(s) has a parametrization

of & is

Cy(s) = (—/sin <$ —|—coss> ds —I—A(s),/cos (? +c0ss> ds—B(s),as+b+C(s)) ,

(1+a?)n (sin6(s)(m —nsins)? +n*coss.cos O(s))

here A(s) = —
where A(s) (m—nsins)3 ’
B(s) = (1—|—a2)n(n2coss.sin9(s)‘—(m—nsins)zcose(s)) and Cl(s) = (1+a) n?’coss'
(m—nsins)3 a(m—nsins)3

Then the generalized focal curve B of @(s) has a parametrization

B(s) = (—/sin <$+coss> ds+A(s),/cos <$+c0ss> ds—B(s),O).
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It is obvious that associated focal Cy can be obtained from ¥ by matrix function Tg(5) in homoge-

1 0 0 A(s)
neous coordinates (Tf(s)) — 8 (1) (1) g Eig
000 1

%

Fig. 2: Closed plane curve & for
m=1and n =5 inred and its cylin- Fig. 4: Plane curve & with a part of

drical helix ¥ in blue

Fig. 3: Focal curve of ¥ in green its generalized focal curve B in purple
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IMPROVED LOCAL CONVERGENCE ANALYSIS OF THE INVERSE
WEIERSTRASS METHOD FOR SIMULTANEOUS APPROXIMATION
OF POLYNOMIAL ZEROS*

GYURHAN H. NEDZHIBOV

ABSTRACT: In this work we establish new local convergence result with a-priori and a-
posteriori error estimates for the Inverse Weierstrass iterative method for simultaneous approximations
of polynomial zeros. Our approach enlarges the convergence radius and improves the known local
convergence results.

KEYWORDS: Polynomial zeros, Simultaneous method, Weierstrass method, Durand-Kerner
method, Inverse Weierstrass method, Local convergence

1 Introduction
Let P(z) be a monic polynomial

(1) P(z):ao-l—alz-i-...-i-an,lz”_l-l-z",

of degree n > 2, with simple real or complex zeros o, p,...,0,, and let zgo) ,zgo), . ,z,(f)) b
distinct reasonable close approximations of these zeros.

In this study we consider a simultaneous iterative method defined by

) zWﬂ:d}@®>:GHJQ@>,k:QLLUW

[S]

where G : C" — C" is a vector valued function with components

2

Z; .
@ z2=1(21,.-y2n),i=1,...,n,

3 Gi=Gi(z) = —1—
3) i = Gi(z) W

and the Weierstrass’ correction W; : 9 C C* — C is defined by

P(z)

(4) WD) = [ o

=1,...,n)

where ¥ is the set of all vectors in C" with distinct components. Then we can define the operator
W:2cCC"—= C'"by W(z) = (Wi(2),...,Wa(z)).

The method (2)-(3) was firstly introduced in [1], and some recent results were obtained in
[2, 3, 4, 5]. The obtained results in these works are modifications of local convergence results of
classical Weierstrass iterative method presented in [6, 7, 8, 9, 10, 11, 12].

Throughout this paper, we will use the p-norm defined by

(5) Ixllp = (Z \)@'!”)
i=1

*Paper written with financial support of Shumen University under Grant RD 08-145/2018.
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for some 1 < p < oo and we will follow the usual convention that a summation over the empty set

of indices equals 0, while a product over the same set equals 1. We use the function d : C"* — R
defined by

(6) d(x) = min{8(x), y(x)},
where
(7 0(x) = minizj|x; —x;| and y(x) = minj|x;| (j=1,...,n).

Further, for a number p such that 1 < p < o we denote by g the conjugate exponent of p, i.e. g is

defined by means of

1 1
—4+—-—=1and 1 <g<oo.
P q

We study the local convergence of the Inverse Weierstrass method (2)-(3) with respect to the func-
tion of initial conditions E : " — % defined as follows

® B ="l

In our previous work (see [4])we have proved the following convergence result.

Theorem 1.1. Let P € €[z] be a monic polynomial of degree n > 2, where oo = {a € €" : o #
0and o; # aj fori,j=1,...,n} is the root vector of P, and let 1 < p <o, d =d(o) = min{9, v},
where 0 = minj.;|0; — o] and 'y = min;|0y| for i,j =1,...,n (i # j). Suppose 20 e € is an
initial guess satisfying

0) _ T
Z o 0n-1—1
(9) E(z") = a(a) <R(n,p)=—— T
20(0n T —1)+(n—1)"7
where
B4+ 20 |
(10) 9:319 24+vb*—4b+20 andsztli.

2(b+1)

Then the following statements hold true.

(i) CONVERGENCE. The Inverse Weierstrass iteration (2)-(3) is well defined and converges quadrat-
ically to the root-vector o of P.

(ii) A POSTERIORI ERROR ESTIMATE. For all k > 0 we have the estimate

(11) |24 —all, < A7 1% ~ ],
(iii) A PRIORI ERROR ESTIMATE. For all k > 1 we have the estimate
(12) 129~ all, <2270~ e,
where A = E(z\")) /R(n, p).

The main purpose of this work is to improve this theorem and obtain new local convergence
result with larger radius of convergence.
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2  Main Results

First, we introduce some auxiliary results. We will state following three known lemmas that
we will use without proofs (the proofs may be found, e.g. in [12]).

Lemma 2.1. Letu € €" and 1 < p < oo, Then

(13) |u,~\—|—]uj\§2$|]u”p forany i,j=1,2,...,n.
Lemma 2.2, Letu € " and 1 < p < oo, Then
. leellp \ "
(14) <E(1+|u,~|)—1> < (HW) —1
Lemma 2.3. Letne A ,t>0and 0 < @ < 1. Then
(15) (I+o)" —1<@((1+1)"—1).
Now, we will prove the following two lemmas.

Lemma24. Let0 <t < 1/21/‘1, n> 2 and

t
(n—1)V/p(1—2Var)

(16) o) =1+

Suppose that

(17) o) ! <211,
then it follows

(18) — ()" <2.

Proof. It is easy to prove that

(19) f=—7— 1
2 <2f1<"+1)—1>+(n—1) ’

is the unique root of the equation
(])(t)n+1 _ 21/q

in the interval (0, 1/2'/9). Taking into account that the function ¢ (¢)"*! is continuous and strictly
increasing on the interval I = [0,7], we deduce that (17) is equivalent to

r<t.

From this and (19) it follows that

14+1 (27 + 1)@ — 1)+ (n—1)"YP _ 32w -2
< 1 < .

(20) > 1
1—t¢ L b o
(24 —1)(24+) —1) 4 (n—1)"1/p 20t
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From (17) it follows that

n—1
21) ¢(r)" ! < 24070
The last two relations (20) and (21) it follows that

1
141 32m4 —2  n-l_ n— n
(22) 1—+t o(r)"! < 25 T Zoden = 3067 225 = 9(n).
. o

The function 6(n) is is continuous and strictly increasing for n > 2 and

(23) lim 6(n) = 2.

n—>oo

Now from (22) and (23) follows the statement (18). The lemma is proved.

H—a

The next lemma is due to our previous work [4] in the case when ) H is replaced by
p
=%~ ]l
dla) *

Lemma 2.5. Let P € €[z] be a monic polynomial of degree n > 2, where @ = {a € €" : o; #
0and o; # a;j fori,j=1,...,n} is the root-vector of P, 1 < p < oo, Let for any k > 0

*) — o 1
_ =z lp _ 1

(24) Ey=E(zW) d 24
q

Y

where d = d(a) is defined by (6).Then the iteration 70 is well defined and it has distinct compo-
nents. Besides,

(25) 15 — el < or|zH) — el
and

(26) E@% ) < oE(zW),
where

L (1+ Ey )"_1 ~1
1-E; (n—1)V/r(1-214E)

K E, n—1"
e A= =)

Proof. Using the triangle inequality, Lemma 2.1 and (24), we get for i # j

(27) O = G(Ek) =

k k k k
= 2 eyl 1 - ol =1~ o
Z(k)fai ZE»k)—OCj
(28) = (1= o=y || 0—0 0 —

1k 1
> 1—25%) d(a) = (1—-21E)d >0,
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which means that z*) has distinct components, i.e. the iteration is well defined. Now we will prove
the following estimates

(29) Y g < ol — ] for i=1,2,....n

]

For easy of later comparisons, we will use the following equivalent form of (3)

(k)
(30) Zl(k+1) :Zﬁk) ( (z(k)) ,i=1,2,....n,
which implies
Lo
W:(z(k) J#’ k) _ k)
S“”—ai:zﬁ“—ai—% = (5 —a) [1- ——
I+=m I+7®
and consequently
O W
(k+1) (k) r »l <-'g * z(fk) |
(z —o) = (g —) < :
1 W,(Z( ))
T=®
Zl
Therefore
(1) 4 — i =4 —
where ®
! WizM)
e | 7 </f TTm
l
Zl
Now, we can bound the amplification factor Agk) as follows
(k) 0
D —ay 7 =0 no % =
]HH&, 6 |[Wa g
J 4 i
G2 A" P e P
1 | ! n it e A
® JFl (k) 0
i % "j
We next establish the following inequalities
k k
(33) 571> Joal = |5 — oa] = d — 9~ all, > (1~ E)d > 0.
It follows from (28) and the definition of E (z(¥)) that
(k) &) _ . ®) _ .
S — O Z; a Z: o
(34) | =1+ —m| S o
Z =z 7 —Z; (1-2¢E)d(x)



Nedzhibov G.

From (32), the last two inequalities (34) and (33), and Lemma 2.2, we obtain

n—1 n—1
(1+—15k 1 ) —1+%(1+—1Ek 1 )
(35) A(k) < (n—1)P (1-29Ey) k (n—1)P (1-29Ey)

— E e n—1
| —k>
=5 ( (i—1)7 (129 E)

and consequently

n—1
1 E
4 ) 1
AW < o ( (n—1)7 (1-29E,)

i = E - n—1
1— B (14 L )
o ( (n-1)7 (1-295)

Finally, from the last expression and (31) we obtain (29). Taking the p-norm in (29), we deduce
the inequality in (25). We get the second inequality in (26) taking the p-norm and by dividing both
sides of inequality (29) by d(a).

Now we are ready to state the main result of this paper which improves the previous results
introduced in [4].

= Of.

Theorem 2.6. Let P € €[z] be a monic polynomial of degree n > 2, where oo = {a € €" : o #
0 and o # o fori,j=1,...,n} is the root vector of P, and let 1 < p < oo. Suppose 20 e is
an initial guess satisfying

(O) — 2q(n+1) — ]
)y _ 127 —allp _
(36) E(z") (@) <R(n,p)

1

1
2427 — 1)+ (n—1)"7

Then the following statements hold true.

(i) CONVERGENCE. The Inverse Weierstrass iteration (2)-(3) is well defined and converges quadrat-
ically to the root-vector o of P.

(ii) A POSTERIORI ERROR ESTIMATE. For all k > 0 we have the estimate

(37 [ —all, < 2% —all.
(iii) A PRIORI ERROR ESTIMATE. For all k > 1 we have the estimate
(38) 1 —ally <27 ~ ],
where 2. = E(z\9) /R(n, p).

Proof. (i) From the Lemma 2.4 it follows that R = R(n, p) is the unique solution of the
equation ¢ (¢)"*! = 2!/ in the interval (0,1/2'/9), where ¢(¢) is defined by (16). First, we will
prove that for any k > O the iteration 7z in (2)-(3) is well defined and

E(z®) <RrAY.

We shall use mathematical induction to prove the statement. First, we confirm that the base case
_1
k =0 is true due to definition of A. Using the assumption n > 2 and that (n— 1) » > 0 for any
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1 < p < oo, it can be shown that R < 1/2!/4. Then the initial assumption E(z(?)) < R implies
E (z(o)) <1/ 2!/4. From this and Lemma 2.5 we deduce that the iteration z(¥) is well defined.
Now, we will prove that
o(Ep) <A.

From (27) it follows that o (E)) can be written in the following equivalent form

1 E " tE
(" migy) R

n—17
— J— Ek
1—-E,—E; <1 + (n_l)l/p(l_zl/qu)>

(39) o(Ex) =

which implies

n—1
AR
((1 toTeE) - 1) +AR

R n—1
1= R=R (14 (i)

G(Eo) <

R
(n—1)Y/P(1-21/4R)

n—1
R
A ((1 + (n—l)‘/p(1—21/"lR)> o 1) +AR

From Lemma 2.3, where ¢ = A and t = we deduce

(40) o(Ep) < . ——— <Ao(R),
1=R=R (14 (i)
where 1
R "
<(1 o) 1) R
o(R) =

R n—1 -
1= R=R (14 (ot

It is easy to show that the assumption 6(R) < 1 is equivalent to the assumption defined by (18),
where t = R. Therefore, from (40) using Lemma 2.3 and the definition of R we deduce that
o(Ey) <A.

Suppose that for any k£ > 0 is fulfilled
(41) E(z%) <RrA?
and we will prove that

From (39) and the assumption by induction we obtain

n—1
A2R 2k

n—1
R
1= R=R (14 )

(42) o(Ey) <

<2%6(R) < 2%,

Therefore, from (42), the assumption (41) and the estimate (26) it follows that
E(%)) < gE(zP) < A¥RAY =22'R.

-71 -



Nedzhibov G.

Using the inequality R < 1/2'/4 it follows that E(z*t1)) < 1/21/4, which implies by Lemma 2.5
that the iteration z*™1) is well defined.
(i1) From (42) and Lemma 2.5 estimate (25) it is trivial to prove that

k+1 2K (k
125 — e, <2729 — el
(111) From the assertion (i1) and the sum of geometric progression, we obtain

A ®D ]|, < APTAET D) ]|, <

[0 —all, <
< 2277 2710 —a, = 2210 — g,

which implies (38). The theorem is proved.
In the case of use the maximum vector norm, i.e. if p = o, we obtain the following corollary
of Theorem 2.6.

Theorem 2.7. Let P € €[z| be a monic polynomial of degree n > 2, where oo = {a € €" : o #
0 and o; # aj fori,j = 1,...,n} is the root vector of P, and let p = oo. Suppose 20 e ¢ isan
initial guess satisfying

43) E(z") = I @l _ 277 -1
d(a) 22— 1

Then the Inverse Weierstrass iteration (2)-(3) is well defined, converges quadratically to the root-
vector o, of P and the error estimates (37) and (38) are hold true.

3 Conclusion

In this work we investigate convergence analysis of the Inverse Weierstrass iterative method
for simultaneous approximation of polynomial zeros. Our goal was to obtain new local conver-
gence analysis results and to improve the existing ones. We establish a new convergence theorem
with larger radius of convergence.
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POINTS FOR CYCLIC KANNAN TYPE CONTRACTION MAPS IN
MODULAR FUNCTION SPACES*
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ABSTRACT: We have found sufficient conditions for the existence and uniqueness of coupled
fixed points and coupled best proximity points for Kannan type contraction maps in modular function

spaces.

KEYWORDS: Coupled fixed points, Coupled best proximity points, Modular function space,
Kannan maps

1 Introduction

A fundamental result in fixed point theory is the Banach Contraction Principle in Banach
spaces or in complete metric spaces. Fixed point theory is an important tool for solving equations
Tx = x for mappings T defined on subsets of metric or normed spaces. It is widely applied to
nonlinear integral equations and differential equations.

The concept of coupled fixed point theorem is introduced in [3]. Later on Bhaskar and
Lakshmikantham [1] introduced the notions of a mixed monotone mapping, studied the problems
of uniqueness of a coupled fixed point in partially ordered metric spaces and applied their theorems
to problems of the existence of solution for a periodic boundary value problem. Harjani, L6pez and
Sadarangani obtained in [S] some coupled fixed point theorems for a mixed monotone operator in
a complete metric space endowed with a partial order by using altering distance functions. They
applied their results to the study of the existence and uniqueness of a nonlinear integral equation.
Recent results about the application of coupled fixed point theorems for solving integral equations
are obtained in [9].

Other kind of a generalization of the Banach Contraction Principle is the notion of cyclic
maps [13]. Because a non-self mapping 7 : A — B does not necessarily have a fixed point, one
often attempts to find an element x which is in some sense closest to Tx. Best proximity point
theorems are relevant in this perspective. The notion of best proximity point is introduced in
[2]. This definition is more general than the notion of cyclic maps [13], in sense that if the sets
intersect then every best proximity point is a fixed point. A sufficient condition for the existence
and uniqueness of the best proximity points in uniformly convex Banach spaces is given in [2].

First results in the approximation of the sequence of successive iterations, which converges
to the best proximity point for cyclic contractions is obtained in [26] and for coupled best proximity
points in [6].

Besides the idea of defining a norm and considering a Banach space, another direction of
generalization of the Banach Contraction Principle is based on considering an abstractly given
functional defined on a linear space, which controls the growth of the members of the space. This
functional is usually called modular and it defines a modular space. The theory of modular spaces
was initiated by Nakano [21] in connection with the theory of ordered spaces, which was further
generalized by Musielak and Orlicz [20]. Modular function spaces are subclass of the modular
spaces. The study of the geometry of modular function spaces was initiated by Kozlowski [16,
14, 15]. Fixed point results in modular function spaces were obtained first by Khamsi, Kozlowski

*The first author is partially supported by fund MU17-FMI-007 of University of Plovdiv Paisii Hilendarski.
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and Reich [11]. Further development of the theory of fixed points in modular function spaces can
be found in the exhaustive references of the survey article [17] and in the book [10]. Kozlowski
has contributed a lot towards the study of modular function spaces both on his own and with his
collaborators. First results about best proximity points in modular function spaces are obtained in
[7, 25].

A genarization of the idea of coupled fixed points and coupled best proximity points in
modular function spaces was done in [8]. We have tried to generalize the idea of coupled fixed
points and coupled best proximity points in modular function spaces for Kannan contraction maps.

2  Preliminaries

Following [17, 10] we will recall some basic notions and facts about modular function
spaces.

Let Q be a nonempty set and X be a nontrivial o—algebra of subsets of Q. Let &2 be a §-ring
of subsets of Q, such that ENA € & forany E € & and A € X. let us assume that there exists
an increasing sequence of sets K, € & such that Q = UK,. By & we denote the linear space
of all simple functions with supports from &?. By .Z., we will denote the space of all extended
measurable functions, i.e. all functions f :  — [—oo, o0| such that there exists a sequence {g,} C &,
lgn| <|f] and g,(®) — f(w) for all ® € Q. By 14 we denote the characteristic function of the set
A.

Definition 1. Let p : .. — [0,0] be a nontrivial convex and even function. We say that p is a
regular convex function pseudomodular if:
(i) p(0)=0;
(ii) p is monotone, i.e., |f(®)| < |g(w)| for all ® € Q implies p(f) < p(g), where f,g € Me,
(iii) p is orthogonaly subadditive, i.e., p(flaug) < p(fla) + p(f1p), where A,B € ¥ such that
ANB#0, f € Mo
(iv) p has the Fatou property, i.e.,
f € M
(v) p is order continuous in &, i.e., g, € & and |g,(®)| J 0 implies p(g,) | 0.

Similarly as in the case of measure spaces, we say that a set A € ¥ is p—nullif p(gl4) =0 for
every g € &. We say that a property holds p—almost everywhere if the exceptional set is p—null.
As usual we identify any pair of measurable sets whose symmetric difference is p—null as well as
any pair of measurable functions differing only on a p—null set. With this in mind we define

ful@)| 1 |f(@)] for all @ € Q implies p(f,)  p(f), where

M(Q,0,7,p) ={f € Me;

f(@)] <eop —ae},

where each f € .#(Q,0,7,p) is actually an equivalence class of functions equal p a.e. rather
than an individual function. Where no confusion exists we will write .# instead of .Z (Q,0,Z,p).

Definition 2. Let p be a regular convex function pseudomodular.

(1) We say that p(0) is a regular convex function semimodular if p(of) = 0 for every o« > 0
implies f =0 p—a.e.;

(2) We say that p is a regular convex function modular if p(f) = 0 implies f =0 p—a.e.
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The class of all nonzero regular convex function modular defined on Q will be denoted by
R.

Let us denote p(f,E) = p(flg) for f € #, E € L. Tt is easy to prove that p(f,E) is a
function pseudomodular in the sense of Definition 2.1.1 in [16] (more precisely, it is a function
pseudomodular with the Fatou property). Therefore, we can use all results of the standard theory
of modular function spaces as per the framework defined by Kozlowski [16, 14, 15], see also
Musielk [20] for the basics of the general modular theory.

Definition 3. Let p be a convex function modular.

(a) A modular function space is the vector space Ly(Q,X), or briefly Ly, defined by
Lo={fe#:p(Af) = 0as A —0};

(b) The following formula defines a norm in Ly (frequently called Luxemburg norm):

||f]|p:inf{a>0:p(§) gl}.

For the rest of the article if we state someting about a norm we will mean Luxemburg norm
| - |lp, which is generated by the modular p.

In this way, Lebesgue, Orlicz, Musielak—Orlicz, Lorentz, Orlicz—Lorentz are examples of
modular function spaces.

In the following theorem, we recall some of the basic properties of modular function spaces.

Theorem 4. Let p € fR.

(1) (Lp,||fllp) is a complete and the norm || - ||p is a monotone w.r.t the natural order in A .

(2) | fullp = Oiff p(afn) — O for every a > 0.
(3) If p(af,) — O for an o, then there exists a subsequence {g,} of {fn} such that g, — 0 p—a.e.
(4) If {fn} converges uniformly to f on a set E € &, then p(a(f,— f),E) — 0 for every o. > 0.

(5) Let f,, — f p—a.e. There exists a nondecreasing sequence of sets Hy € & such that Hy 1 Q
and f, converges uniformly to [ on every Hy (Egoroff Theorem).

(6) p(f) < liminfp(f,) whenever f, — f p—a.e. (Note that this property is equivalent to the
Fatou property).

(7) Define Lg {feLy:p(f,)isorder continuous} and E, ={f € Ly : A f € Lg forevery AL >0}
we have

(a) Lp D LY D Ep;
(b) E, has the Lebesgue property, i.e. p(otf,Dy) — 0 for a >0, f € Ep and Dy | 0;
(c) Ep is the closure of & (in the sense of || - || p).

The next definition gives generalizations of the classical notions for normed spaces in the
context of modular function spaces.
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Definition 5. Let L, € R.
(a) We say that { f,} is a p—convergent to f and we write f,, — f(p) if and only if p(fn — f) — O;

(b) A sequence {f,}_| C Lp is called p—Cauchy if for any € > 0 there exists N € N, such that for
any m > n > N there holds the inequality p(fm — fn) < €

(c) The modular function space L, is called p—complete if any p—Cauchy sequence is p—convergent.

(d) A set B C L, is called p—closed if for any sequence of f, € B, the convergence f, — f(p)
implies that f belongs to B;

(e) Aset B C Ly is called p—bounded if its p—diameter 8y (B) = sup{p(f —g): f,8§ € B} <oo;

(f) A set B C Ly is called p—a.e. closed if for any {f,} in C which p—a.e. converges to some f,
then we must have f € C;

(g) Let A,B C Lp. We define the p—distance between the sets A and B by

dp(A,B) =inf{p(f—g): f€A,g€B}
and dp(f,B) =inf{p(f —g) : ¢ € B} if A consists of a single element f,

(h) We say that a function modular p has the Ap—property if sup, .y p(2fn,Dx) — 0, whenever
Dy | 0 and sup,,c p(fn, D) — 0.

(i) ([10], p.116) A function modular p € *R is called uniformly continuous if for any L > 0 and
€ > 0 there exists 8 = 0(L, &) > 0 such that if p(x) < L and p(y) < 0 there holds the inequality

p(x+y)—px)| <e
Theorem 6. Let p € R. Then Ly is p—complete.
Theorem 7. Let p € R. The following conditions are equivalent
(a) p has Ay;
(b) Lg is a linear subspace of Lp;
(c) Ly = Lg =E,;
(d) If p(fn) = 0, then p(2fn) = 0;

(e) If p(oufn) — O for an o0 > 0, then || fu||p — O, i.e., the modular convergence is equivalent to
the norm convergence.

Let us mention that the p—convergence do not imply p—Cauchy, since p— does not satisfy
the triangle inequality. If p has Ap—property then p—convergence imply p—Cauchy.

Generalization of convexity properties for Banach spaces are investigated for modular func-
tion spaces in [12]. As demonstrated in [17] one concept of uniform convexity for Banach spaces
generates several different types of uniform convexity in modular function spaces. This is due
primarily to the fact that in general the modular function is not homogeneous.
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Definition 8. Let p € Rand i € {1,2}. Let r > 0, € > 0. Define
Di(r,e) ={(f.8): f,8 €Lp,p(f) <r.p(8) <r,p (g) > er}.
Let 8:(r,€) = inf{l ~1p (%) - (f,g) € Di(r, e)} > 0ifD;(r,€) £ 0 and 8(r,€) = 1 if Di(r,€) =
0.
(i) We say that p satisfies (UCi) if for any r > 0, € > 0 there holds the inequality &;(r,s) > 0.

(ii) We say that p satisfies (UUCI) if for every s > 0, € > 0 there exists M;(s,€) > 0, depending
on s and € such that
0i(r,s) > ni(s,€) > 0 forr>s.

If p is (UC1) we obtain that the inequality

0 p(32) <rti-sie)

holds for every p(x),p(y) < rand p (x—y) > re.

Proposition 9. The following conditions characterize relationship between the notions, that are
defined in Definition 8

(1) (UUCi) implies (UCi) fori € 1,2;

(2) b1(r.e) < &(re);

(3) (UCI) implies (UC2);

(4) (UUCI) implies (UUC2);

(5) If p € R, then (UUCI) and (UUC2) are equivalent;

(6) I p is homogeneous (e.g. is a norm) then all conditions (UCI), (UC2), (UUCI) and (UUC2)
are equivalent.

Lemma 10. (/25]) Let p € R. Let p be (UCI), has the Ay—property, A C Ly be a p—closed and con-
vex subset, B C Ly be p—closed subset and AUB be p—bounded. If the sequences {x,}_y,{zn}5_; C
A and {y,};_, C B be such that:

(i) limy s P(20 — yn) = dp;

(ii) for every € > 0 there exists No € N such that for every m > n > Ny there holds the inequality
P (X —yn) < dp + €.

Then for every € > O there exists N1 € N such that for every m > n > N there holds the inequality
P (xm—2zn) <E.

Lemma 11. (/25]) Let p € *R. Let p be (UCI), has the Ay—property, A be a p—closed and
convex subset of Lp, B be p—closed subset of Ly and AUB be p—bounded. If the sequences
{xn}e Azt CAand {yn};_| C B be such that:
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(i) limn%oop(zn —yn) = dP"
(ii) 1imy_seo P (X — yn) = dp.
Then lim,,_ye p (X, — 2,) = 0.

Lemma 12. ([25]) Let p € R. Let p has the Ay—property, be uniformly continuous, A,B C Ly be
subsets and A UB be p—bounded. If the sequences {x,}7_,{zn}r_; CAand {y,};_, C B be such
that:

(l) limnﬁoop (Zn - xn) =0y
Then llmn*)oop<xn _yl’l) - dp.

We recall that M is called an Orlicz function, provided M is even, convex, continuous non-
decreasing in [0, ) function with M(0) = 0, M(¢) > 0 for any ¢ # 0. Let M be an Orlicz function
and let (Q,X, 1) be a measure space. Let us consider the space L°(Q) consisiting of all mea-
surable real-velued functions on  and define for every f € L%(Q) the Orlicz function modular

M(f) = JoM(f(1)du().

Definition 13. The Orlicz space Ly (2, X, 1) is the space of all classes of equivalent i—measurable
functions f : Q — R over the measure space (Q,X, ) such that M(Af) — 0 as A — 0 or equiva-

lently M (%) < oo for some A > 0.

The function M is a regular convex function modular and it is called Orlicz function modular.
An extensive study of Orlicz spaces can be found in [18, 19, 22, 23].

If M(t) = |t|P, p > 1 we obtain the space L,(€,X, ). The most common examples of Orlicz
spaces are the sequence spaces {7, the function spaces Lys(0,1) and Lys(0,00) that correspond
to the cases: Q countable union of atoms of equal mass, Q = [0, 1] and Q = (0,), u the usual
Lebesgue measure.

We say that M satisfies the Ay—condition if there exist constants C,y > 0, such that M(2¢) <
CM (t) for any ¢ > fy. It is easy to observe that if M satisfies the A;—condition, then the Orlicz
function modular M has the A, property.

If we restrict to the Orlicz space Ly (0, 1), then the Orlicz function modular is defined by

_ 1

M(f)= / M(f(s))du(s). We will denote the corresponding modular function space by L;;(0,1).
0

When M = [t|” we will denote L;(0,1) by L5(0,1).

3 Main Results

Coupled best proximity points and coupled fixed points in metric spaces are defined in [24]
and [3]. Following [24, 3] we will give definitions for coupled best proximity points and coupled
fixed points in modular function spaces.

Just to simplify the notations we will put d = dj (A, B).

Definition 14. Let A and B be nonempty subsets of a modular function space Ly, F : A XA — B.
An ordered pair (x,y) € A X A is called a coupled best proximity point of F if

p(x—F(xy))=py—F(yx)=d.
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Definition 15. Let A be nonempty subset of a modular function space X, F : A XA — A. An ordered
pair (x,y) € A X A is said to be a coupled fixed point of F in A if x = F(x,y) and y = F(y,x).

It is easy to see that if A = B in Definition 14, then a coupled best proximity point reduces to
a coupled fixed point.

Iterated sequences for investigation of existence of coupled best proximity points and cou-
pled fixed points in metric spaces is defined in [3, 24]. Following [24, 3] we will give definitions
for these iterated sequences in modular functional spaces.

Definition 16. (/24])Let A and B be nonempty subsets of a modular function space Ly. Let F :
AxA — Band G:BxB — A. For any pair (x,y) € A X A we define the sequences {x,},_, and

{Vntmo by X0 =x, yo =y and

Xont+1 = F (%2, y20), Yont+1 = F(yan,x2n)
Xon42 = G241, Y20+1)s Yont2 = G(V2nt1,X2n+1)

foralln > 0.

We will generalize the notion of cyclic contraction pair (F,G) of maps in metric spaces
[4, 24] for modular function spaces.

Definition 17. Let A and B be nonempty subsets of a modular function space X, F : A XA — B
and G : B X B — A. The ordered pair (F,G) is said to be a cyclic p—Kannan contraction pair if
there exist non-negative number o, such that & < 1/2 and there holds the inequality

p(F(x,y) = Gu,v)) <o(p(x—F(x,y)) +p(u—Gu,v))) + (1-2a)d(A,B)
forall (x,y) € Ax A and (u,v) € BXB.

Definition 18. Let A be nonempty subsets of a modular function space X, F : A X A — A is said to
be a cyclic p-Kannan contraction map if there exist non-negative numbers o, such that ot < 1/2
and there holds the inequality

p(F(x,y) = F(u,v)) < o(p(x—F(x,y)) + p(u—F(u,v)))
for all x,y,u,v € A.

Theorem 19. Let p € R. Let A C Ly be nonempty, p—closed and p—bounded. Let F : A X A — A be
a cyclic p-Kannan contraction map. Then F has unique coupled fixed points (x,y) € A. Moreover
for any (xo,y0) € A the sequences {x,}, {y,} defined by the equations:

) x1 = F(x0,y0), y1 = F(y0,%0),
Xn+1 :F(xnayn>, Yn+1 :F(ynvxn)7

n=1,2,..., converge to the unique coupled fixed points (x,y) € A .

Proof. From the definition of (2) we get

P (Xn1 = Xn) = P(F (X, yn) — F (Xn—1,¥n-1)) < P (Xn — Xnt1) + 0P (Xp—1 — Xn)
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and
P 1 —Yn) = PF Vs Xn) = F Vn—1,%n-1)) < 0P (Yn — Ynt1) + 0P (Yn—1 — Yn)-
And we get

o
P (Xnt1—xn) < mp(xn_l — Xn)

and o
p(yn—i—l _yn) S mp(yn—l _yn>~

Therefore after summing the above inequalities we get

(04

Pt =Xn) P Onit —=yn) < 7 (PLn = Xa1) +P (= Yn-1))

2
< (%) (p(xn—l _xn—l)+p(yn—l _yn—Z)

< ... < (%)n(p(xl —x0) +p (1 —y0))-

From the last chain of inequalities we get that for any n, p € N there holds

D (ks — )+ POty —3n) < (L)n<p(xp—xo>+p<yp—yo>>.

l-o
From the assumption that A is a p—bounded set it follows that existence of M > 0, such that
p(u—v) <M for any u,v € A. Consequently

o

P (Xntp —Xn) + P (Vntp —Yn) < (m) (p(xp—x0)+p(yp—y0)) <2M (%) )

From lf‘a € [0,1) it follows that for any € > 0 there is Ny such that for any n > Ny, there holds

(t2;)" < 5. Then for any ng > N and any p > 1 the inequality max{p (x+p — Xn), 0 (Yntp —
yn)} <2M (&)n < € holds. Thus for every € > 0 there exists Ny such that for any n > Ny the
inequality p(z,+p —2x) < € holds, for p € N and z = x or z =y. Therefore {x,} and {y,} are
Cauchy sequences. From the completeness of L, and the closeness of A it follows that there are
x,y € A, such that lim,,_, p (x, —x) = 0 and lim,,_,ee p (y, —y) = 0.

We will proof that F(x,y) = x and F(y,x) = y.

px—F(xy) = Iimp (ot —F(xy) < limp(F(uy) ~ F(x,y)
< lim 0 (5 —x11) + ap (x— F(x,)).

Thus we get the inequality (1 —a)p (x — F(x,y)) < lim, e 0p (X, —Xxp41) =0, 1.e. x=F(x,y). In
a similar fashion we get

p(y_F(yax)) = hmp(yn—i-l _F(yax)) < r}l_r};lop (F(ymxn) _F(yvx))

n—oo

< nli_rg;ap(y,, _)’n—H) + Ocp(y—F(y,x)).

Thus we get the inequality (1 — ot)p (y — F(y,x)) < limy—yeo 0P (Y — Yu+1) = 0, i.e. x = F(x,y).
Therefore (x,y) is coupled fixed points of F in A.
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Suppose (u,v) is another coupled fixed points of F in A i.e. u = F(u,v) and v = F(v,u).
From the inequalities

p(x—u)=p(F(x,y) = F(u,v) < ap(x—F(x,y)) +op(u—F(u,v))

and
p(y—v)=p(F(y,x) —F(vu) < op(y—F(yx))+op(v—F(v,u))
we get that p(x —u) = p(y — v) = 0, which is a contradiction. So the assumption that there exists
second coupled fixed points is not true.
By what we have just proved for any initial guess (uo, vo) the sequences {u, };_, and {v,}5_,
defined in (2) converge to a coupled fixed point (u,v) of F in A, which is unique. Thus {u,};_,
and {v, };~_, converge to the coupled fixed point (x,y) O

Theorem 20. Let p € R. Assume that p satisfies (UCI), has the Ap—property and be uniformly
continuous. Let A,B C Ly be p—closed, p—bounded, convex subsets, F : AXA — Band G:BXB —
A and the ordered pair (F,G) be an cyclic p—Kannan contraction pair. Then there exists a unique
order pair (x,y) € A X A such that (x,y) is a coupled p—best proximity points of F in A (i.e. p(x—
F(x7y)) —i—p(y—F(y,x)) = 2d(AvB))- There holds x = G(F(x,y),F(y,x)), Y= G(F(y,x),F(x,y))
the order pair (F(y,x),F(x,y)) is a coupled p—best proximity points of G in B. More over for any
initial guess (xp,y0) € A X A the iterated sequences {x,}, {y} defined by

Xon+1 :F(x2n>y2n)a Yon+1 = F(y2n>x2n)7

3) Xon42 = G(X2n+1,Y2n41): Y2n12 = G(V2nt1,X2n+1),
n=01.2...

satisfied

Y}EEOP(XZn _x) = 07 r}gl;lop(yZn _y) = 07 r}i_l;l;lop(x2n+l —F(X,y)) = 07 nlglolop(yZnJrl _F(y7x)) =0.
Lemma 21. Let p € R. Assume that p satisfies (UCI1), has the Ay—property and be uniformly
continuous. Let A,B C L, be nonempty, p—closed and p—bounded, convex subsets, F : A x A — B
and G : B x B — A and the ordered pair (F,G) be a cyclic p—Kannan contraction pair. If (xo,yo) €
A and we define:

Xont+1 = F (%20, y2n), Yan+1 = F (yan,%2n)

Xon+2 = G(X2nt1,Y2041)s Yan+2 = G(Van+1,%20+1)

for all n € N U{0}, then 1i_1>n p(x2n —X2n+1) =d, lgn P (yon —Yon+1) = d.
n—oo n—oo
Proof. From the assumption that (F, G) is a cyclic p—Kannan contraction pair we get

P (F (x2n,¥2n) — G(X2n—1,Y20-1))

p(xont1 —x2n) =
< ap(xon —xmt1) + 0P (X2n—1 —x2,) + (1 —20x)d

and
p(F(y2n7x2n) - G(y2n—1 7x2n—1))

p(y2n+l_y2n) =
< op (Y —Yant1) F 0P (Yon—1—y2n)) + (1 —20)d.

Therefore

(04 o
n — Aln g— n-— A2n— l———
P (2ms1 = x2n) < 7 P2 — 02 1)+( 1—a)d
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and
o o
P (2t — yzn)Sl—P(yzn yzn_1)+(1—1—)d
—a
Thus
p(oni1—xm) —d < (%) (P(x2n —x20-1) — d)
2n
< (1%)" (plxi —x0) — d)
Pt —ym)—d < (%) (P(van —yan—1) —d)
2n
< (%) (p(y1 —y0) —4d)
Therefore limy, o P (X2, — X24+1) = d and lim, o = p (y2, — Yon+1) = d. O

Lemma 22. Let p € R. Assume that p satisfies (UCI1), has the Ay—property and be uniformly
continuous. Let A, B C L, be p—closed, p—bounded, convex subsets, F : AXA — Band G:BxB —
A and the ordered pair (F,G) be a cyclic p—Kannan contraction pair. If (xo,y0) € A X A and we
define:

Xon+1 = F(X2n,y2n), Yont1 = F (Yon, Xan)

Xon+2 = G(X2nt1,Y20+41)s Yani2 = G(Van+1,%20+1)
for all n € N U{0}, then for € > 0, there exists a positive integer Ny such that for all m > n > Ny
such that n+ m is an odd number we have p (X, — xn) + P (Y — Xxn) < 2d + €.

Proof. From the assumption that (F,G) is a cyclic p—Kannan contraction pair we get

p(G(XZm—l ;yZm—l> - F(x2n7y2n))

p(x2m_x2n+1> =
< ap(me_l —X2m) —|—OCp(X2n —XQ,,_H) —l—(l —206)6[.

Thus
p(x2m —x2m11) —d < a(p(xom x2m) d)JFO‘(P(in—xZ;H)—d)
< (a) Talpxo—x)—d)+ (%) " a(p(xo—x1) — d)
and
P(vam—Yam+1) = P(Gam—1,%2m—1)—F (yon,x2n))
< opam—1—Y2m) + ap(x2, —x2441) + (1 —200)d
Thus

P (yom —yons1) —d < a(p(yom—1—yom) —d) +a(P(y2n —Y2u41) — d)
< (+%)" alplo—y) —d)+ (+%) " a(p(o—y1) —d)
Therefore for any € > 0, there exists a positive integer Ny such that for all m > n > Ny such that
n~+m is an odd number we have p (x, —x,) + P (Y — xn) < 2d + €. ]

Lemma 23. Let p € R. Assume that p satisfies (UCI), has the Ay—property and be uniformly
continuous. Let A, B C L, be p—closed, p—bounded, convex subsets, F : AXA — Band G:BxB —
A and the ordered pair (F,G) be a cyclic p—Kannan contraction pair. If (x9,y0) € A X A and we
define:

Xon+1 = F (X2, Y2n), Yont1 = F (yan, X2n)

x2n42 = G(X2nt1,Y2n+1)s Yant2 = G(Von+1,X2n+1)-
for all n € N U{0}. If the sequences {x2,};_, and {yn} 5, are p—convergent to x and y respec-
tively, then p(x— F(x,y)) =d and p(y — F(y,x)) =d.
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Proof. From Lemma 21 we have that there hold the equalities lim, o p (X2, — X24+1) = d and
lim,—ye0 P (X21142 — X21+1) = d. Thus from Lemma 11 we obtain lim,, . p (x2, — X2,+2) = 0. From
limy,—ye0 p (X2, —X2,—1) = d and lim,, e, p (X2, —x) = 0 applying Lemma 12 we get im0 P (X2,—1 —
x)=d.

From Lemma 21 we have that there hold the equalities lim, o p(y2, — y2n+1) = d and
limy,—ye0 P (Y242 — Y2n+1) = d. Thus from Lemma 11 we obtain lim,, . p (y2n — y2n+2) = 0. From
lim, o0 P (Y2 — y2n—1) = d and lim,, e p (y2, —y) = 0 applying Lemma 12 we get lim,, oo p (Y21—1 —

y) =d.
Since
pIF(ry) =) < lim p(F(x.y) —xa0) = lim p(P(x.5) = Glrzs-1.32:-1)
< r}grolo [Ocp(x—F(x,y)) +ap(x2n71 _x2n> + (1 —ZOC)d] =d.
Thus

(1= 0)d < (1 @)p(F(x.y) ~2) < lim ap(xa1 —xz) + (1 —2a)d = (1 - @)d.

Consequently p(F(x,y) —x) =d.

Since
p(F(y,X)—y) S ,}i_rgl}op(F(yvx)_yZn) :r}i_{{)loP(F()’,x)—G(YZn—l,xzn—l))
< lim [ep(y—F(y,%)) + @p(yan-1 = y2) + (1 = 20)d] = d.
Thus

(- @)d < (1 - a)p(F(y.x) ~y) < lim op(ya-1 —y20) + (1~ 2a)d = (1 - @)d.

Consequently p(F(y,x) —y) =d. O

Proof of Theorem 20. For and pair (xg,y9) € (A X A) we consider the sequences {x, }, {y,}. From
Lemma 21 we have that lim,,_,. p (X2, — X2,+1) = d. By Lemma 22 we have that for every € > 0
there exists Ny € N, such that there holds the inequality p (x2,, —X2,41) < d + € for every m,n > Np.
From Lemma 10 by setting z,, = x2,,, Xy = X2, and y, = xo,,1-1 it follows there exists N; € N, such
that the inequality p(7%"x — T'?"x) < € holds for every m > n > N;. Therefore the sequence
{x2,}5_, is a p—Cauchy sequence. The proof that {y,,}’_, is a p—Cauchy sequence can be made
in a similar fashion.

From the completeness of L, and closeness of A is follows that there are x,y € A, such that
lim, e p (X2, —x) = 0 and lim,,_, p (y2, —y) = 0. By Lemma 23 it follows that (x,y) is a coupled
p-best proximity point.

First we will prove that if (x,y) is a coupled p—best proximity point then there holds

x=G(F(x,y),F(yx) and y = G(F(y,x), F (x,y)).
From the inequality

S p(F(x,y) = G(F(x,y),F(y,x)))
ap(

)_
x—=F(xy)) +ap(F(xy) = G(F (x,),F(y,x))) + (1 -20)d

IA
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we get

(I-a)d < (1-a)p(F(x,y)=G(F(x,y),F(y,x)))
< ap(x—F(xy)+(1-2a)d = (1-a)d
and thus it follows that p (F (x,y) — G(F (x,y),F(y,x))
and Lemma 11 it follows that x = G(F (x,y), F(y,x))

) = d. From the equality p(F(x,y) —x) =d
. By similar arguments from the inequality

S = p(F(yx)—G(F(yx),F(xy)))
< ap(y—F(yx)+ap(F(y,x) = G(F(yx),F(xy)))+ (1 -20)d
we get
(1-oa)d a)p(F(y,x) = G(F (y,x),F (x,y)))

IAINA

F(y,x))+ (1 —2)d(A,B) = (1 —o)d

p(y—
and thus it follows that p(F (y,x) — G(F (y,x),F(x,y))) = d. From the equality p(F(y,x) —y) =d
and Lemma 11 it follows that y = G(F (y,x), F (x, y))
Consequently (F(x,y),F(y,x)) is a coupled best proximity point of G in B.
It remains to prove that the coupled best proximity points is unique. Let us suppose the
contrary, i.e. there exists (u,v) € A x A such that p(x —u) + p(y —v) > 0. We can write the
inequalities

(1
o

d = p(F(x,y)—u)=p(F(x,y)—G(F(u,v),F(v,u)))
(4) < op(x—F(x,y))+ap(F(u,v) = G(F(u,v),F(vu)))+ (1 -2a)d
= ap(x—F(x,y)+ap(F(u,v)—u)+(1-20)d =d,
d = p(F(yx)—v)=p(F(x)—GF(v,u),F(uv)))
(5) < oap(y—F(yx)+op(F(yx)—G(F(vu),F(u,v)))+(1-2a)d
= ap(y—F(y,x))+oap(F(yx)—y)+(1-20)d =d,
G % = PE@Y)—x) =p(F(ur) - G(F(x.y).F(3.2))
< ap(u—F(u,v))+ap(F(x,y) = G(F(x,y),F(yx)))+ (1 -2a)d,
o S = P(E(u)—y) = p(F(nu) — G(F(.2).F(x))
< ap(v—Fu))+ap(F(yx)—G(F(yx),F(x,y)))+ (1 —2a)d.
Therefore
p(F(x,y) —u) = p(F(y,x) —v) = p(F(u,v) —x) = p(F(v,u) —y) =d.
From

p(F(x,y) —x) = p(F(y,x) —y) = p(F(u,v) —u) = p(F(v,u) —v) =d.
and Lemma 11 it follows that x =u and y = v.
From Lemma 23 it follows that for every € > 0 there exists N, such that for any n,m > N
there holds p (x2, — x2u+1) < d + €. Therefore applying Lemma 10 and lim,—ye p (X2, — X2541) = d
it follows that {x2,41} 7, is a Cauchy sequence. From the completeness of L, and closeness of B
it follows that there is X € B such that lim,, . p (x2,11 —X) = 0.
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By similar arguments we get from Lemma 23 it follows that for every € > 0 there exists
N, such that for any n,m > N there holds p(y2;, — yom+1) < d + €. Therefore applying Lemma
10 and lim, e p (Y27, — Yon+1) = d it follows that {y2n+1}:l°:1 is a Cauchy sequence. From the
completeness of Ly and closeness of B it follows that there is y € B such that nlgl; p(van+1—y) =0.

We will show that ¥ = F(x,y) and y = F(y,x).

From lim,, e p (X241 —X) = 0, limy, 00 p (X241 — X2,) = d and Lemma 12 it follows that
lim,_,e p (X2, —X) = d. Using the uniform continuity of p we get p (x —X) = lim, e p (X2, —X) =d.
By p(x—F(x,y)) = d and Lemma 10 it follows that X = F (x,y).

From lim,, e p (Y241 —¥) = 0, lim, 00 P (Y2n+1 — Y2n) = d and Lemma 12 it follows that
lim,, ;0 p (y2,, —¥) = d. Using the uniform continuity of p we get p(y—7y) = lim, e p(y2, —¥) =d.
By p(y— F(y,x)) = d and Lemma 10 it follows that y = F (y,x).

It remains to show that any iterated sequences {x,}>_, and {y,}’_, are p—convergent to-
wards the uniques coupled best proximity points (x,y) of F in A

Indeed by taking of an arbitrary initial guess (ug,v9) € A X A we get, that the iterated se-
quences {u,}_, and {v,}’_, are p—convergent towards a coupled best proximity points (u,v) of
F in A. From the uniqueness coupled best proximity points (x,y) of F in A it follows that {u,}’_,
and {v,}>_, are p—convergent towards the unique coupled best proximity points (x,y) of F in A.(0
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SPECTRAL STABILITY FOR PERIODIC STANDING WAVES OF THE
KLEIN-GORDON SYSTEM*

SEVDZHAN A. HAKKAEYV, TURHAN M. SYULEYMANOV

ABSTRACT: We consider spectral stability for periodic wave solutions for the coupled Klein-
Gordon equation. We find conditions on parameters of the waves which imply stability and instabilty of

periodic standing waves. This is achieved via the abstract stability criteria developed by [1]

KEYWORDS: periodic standing waves, Klein-Gordon equation

1 Introduction

Consider the following coupled Klein-Gordon equations

Upp — Uy + U — (|u’2+ﬁ|v|2)u =0
(D
Vit —Vix +V— <B|”|2 + |V|2)V =0,

where u and v are complex valued functions, and 3 is real parameter. This system arise as a model
of the interaction of two fields [10]. System (1) also can be interpreted as a coupled version of the
Klein-Gordon equation

(2) gt — U + 1 — [uf*u = 0.

The existence and stability properties of standing wave u(t,x) = ¢ @(x) is an important ques-
tion both from theoretical and practical point of view. For the classical nonlinear Klein-Gordon
equation

(3) Uy —Au+u—[ulPu=20

Shatah [8] proved the orbital stability of standing waves ford >3 and 1 < p <1+ %, Wwpa < |w| <
1. Sufficient conditions for instability are given in [3, 5, 6]. The orbital instability for d > 3 and
1+ % <p<l+ d472 is established in [9]. Complete characterizations of the linear stability for all
values of p > 1, all dimensions d > 1 and all values of w € (—1,1) is given in [12].

The stability of periodic waves have been studied extensively in the last decade. The exis-
tence and orbital stability of periodic standing waves in one dimensional case for the equation (3)
was considered in [7]. The stability and instability of dnoidal and cnoidal type periodic standing
waves is obtained by using the theory developed in [5, 6].

General abstract framework of spectral stability for second order Hamiltonian systems, re-
cently developed in [1, 11, 12]. In [11, 12] is studied the stability problem of second order in
time nonlinear differential equations on the hole line. In these papers, the authors applied the ab-
stract results to the Boussinesq, Klein-Gordon, and Klein-Gordon-Zakharov equations. In [1], the
authors developed the instability index theory for quadratic operator pencils. Using the abstract
results of [1] in [2] is studied the spectral stability of two parametric periodic traveling-standing
wave solution of the equation (3) in one dimensional case.

In this paper we are interested in spectral stability of periodic standing waves. It is well
known that the spectra of linearized equation depends on the choice of function space. In the space

*This work is partially supported by Scientific Grant RD-08-119/2018 of Shumen University
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of periodic functions spectrum consists of isolated eigenvalues, while in the space of bounded
functions the spectrum is continuous.

Using the theory developed in [1, 11, 12] for the spectral stability of waves for the second
order in time nonlinear equations, we give a complete characterization of the linear stability of
dnoidal periodic standing waves for the equation (1) with respect to the perturbation of the same
period.

The paper is organized as follows. In Section 2, we present the construction of our main
object of study - the periodic standing waves. This is not a new material by any means, but we
do it in order to single out the solutions of interest. In Section 3, we setup the spectral stability
problem and we outline the theory for linearized stability for second order PDE in [1], and point
out to the relevant spectral theoretic results about their linearized operators. In Section 4, we prove
the main results.

2  Periodic standing waves

In this section we will construct the periodic standings waves for the system (1) in the form
u(t,x) =e™e(x), v(t,x) = ™ y(x), where ¢ and y are periodic functions with period 27'. Plug-
ging in the system , we obtain

—¢"+09— (0> +By*)9=0
4)
' +oy—(Be*+ vy =0,

We now looking for periodic standing wave solutions of (4) in two cases of interest.

2.1 case (¢,0)

In this case we look for periodic waves for the equation (4) when ¥ = 0. Now equation (4)
is reduced to the equation

(5) —¢"+(1-wh)p—¢>=0.

Integrating once the above equation, we get

1 a
n_ L4 2., 4
or
1
(M) 97 =5 (-9"+209°+a),

where 6 = 1 —w? and a is a constant of integration. Let @ < 0 and ¢ > 0. Denote by @9 > ¢@; >0
the positive solutions of —p*+426p? +a = 0. Then @; < ¢ < @ and the solution ¢

(8) ¢ (x) = @odn(owx, k),
where
1 o —9f 29320
9) 0+ @F =20, a:\/j(po, K2 = = .
0 1 2 (P(% (pg
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Since dn has a fundamental period 2K (k), then the fundamental period of solution (8) is
2K 2
(10) szﬁ’ Tel— <_ﬂ:’oo>,
o V

Here and below K (k) and E (k) are, as usual, the complete elliptic integrals of the first and
second kind in a Legendre form.

2.2 case (¢,0)
We consider the case ¢ = y. For the periodic function ¢, we have the following ODE

(11) —¢"+09—(B+1)¢’ =0.
Multiplying the equation (11) by ¢’ and integrating, we obtain the equation

n_BH1|_ e, 20
= ¢+[3+1

2

(12) ¢ +aj,

where a is a constant of integration. Let @9 > ¢; > 0 are positive roots of the polynomial —p* +

l% p%+a. Then up to translation the solution of (12) is given by

(13) ¢ (x) = @odn(ox, k),

where

(14) 2 o? — 20 o — B+1 KZ_(pg—QDIZ
() q)l_ﬁ—f—l, = ) ®o, - (pg .

3 Linearized Equation

In this section, we set up the linearized problem for (1). We show that it reduced to the study
of quadratic operator pencil, for which the general theory is developed in [1, 11, 12]. We take the
perturbation in the form

u(t,x) = " (@(x) + p(1,x)), u(t,x) =™ ((x) +4(1,x)),

where p(z,x) and ¢(z,x) are complex valued functions. Plugging this ansatz in (1) and ignoring all
quadratic and higher order terms yields the following linear equation for (p,q)

Pit+2iwp; — pe+0p— (B +1)9*p —20*Rep — 2B @*Req = 0
(15)
Git +2iwg; — gre + 0q — (B + 1) 9> — 29’ Req — 2B 9*Rep = 0

Splitting the real and imaginary parts p = F +iG, g = R+ iS allows us to rewrite the linearized
problem as the following system

(16) Utt‘f‘Jl_])t"—jfﬁ:O;
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where U = (F,R,G,S) and

0 0 —2w 0 H  —2Boy 0 0
1o o o -—2w |28y H, 0 0
T=law 0 0o o0 o= 0 0 H; 0|

0 2w 0 0 0 0 0 H

Hy=—9;+0 -3¢y’
Hy=—9; +0— o> —3y>
Hy = -0 +0—¢>— By?
H4:—axz—|-(f—ﬁ([)2—1[/2.

Note that J7* = ¢, while J* = —J. If we consider the eigenvalue problem associated with
(16), that is U = €MV, we arrive at

(17) APV 4+ AJV + £V =0

Definition 1. We say that the quadratic pencil given by the couple (J,H) is scpectrally unstable,
if there exists an T periodic function V € D(J€) and A : RA > 0, so that

AV +AJV +HV =0.
Otherwise, we say that the quadratic pencil (J,H) is stable.

3.1 Stability of quadratic pencils

We now present the theory developed in [1] for the stability of quadratic pencils, which we
will be able to apply to our problem (17). We only present a corollary of the results therein, which
fits our purposes. We start with some notations.

For a self-adjoint operator H, define the number of the negative eigenvalues

n(H) = #{A € (—,0)No(H)

Next, for a subspace M denote Py, : M — M to be the orthogonal projection onto the subspace
M and Pﬁ := Id — Py. For an operator T, denote Ty; := Py TPy. In particular, if M is finite
dimensional, with orthogonal basis { ._1» Py 1s given in a matrix form by {Txi,x j>}f i1
Theorem 1. Let H = H*, so that n(H) < oo and dim(Ker(H)) < oo. Assume that

1.

(18) (PHPy)~',(PrHPy) ™ PPy,

are both compact operators on L?.
2. There exists a positive operator S, so that Xs = {u : (Su,Su) < oo} is dense in L?,
3. S71ys=, 571 are compact, whereas S(H + A)~'S is compact for A >> 1.

4. J:Ker(H) — Ker(H)*
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5. (Id —JH™'J)|gep(m) is invertible’
Then,
(19) k+ke+k_ =n(H) —n((Id = JH )| gor(ar))-

where k, is the number of positive solutions A of (17), k_ is the number of solutions A of (17) with
positive real part, whereas k. is the total Krein index for the quadratic pencil.

Remark: The non-negative integers k., k_ are even. As a consequence, if n(H) = 1, it
follows from (19) that k. = k_ = 0 and

(20) kr =1—n((Id —TH ') |ger(ar))-

If the right side of (19) is odd number, then k, > 1 and hence we have instability.
4 Main Results.

We are interested in the spectral stability of periodic standing waves for the system (1). We
apply the theory developed in [1] for the stability of quadratic operator pencils. We review and
state main results regarding the spectral theory of Hill operators arising in the linearization around
corresponding standing waves. First, we establish the spectral stability of periodic standing wave
solutions (¢,0).

Theorem 2. Let 0 < B < 1. The dnoidal solution (¢,0), where @ described in (8), is scpectrally

stable for |w| > m, and unstable for |w| < , /m where

(2= A)[E* (k) — (1 = K*)K2(x)]
(2—Kk?)E?(x) —2(1 — k?)E(K)K(x)

M(k) :=

For1 < B <3and|w| > m, the solution are unstable.

We now give a different formulation of the main result. Let 7 > V27, Then, the waves

described in (8) are one parameter family of waves, having a fundamental period 27", which can

22
T2
Now, Theorem 2 asserts that the stable waves in this family are exactly those with |w| > wr, where

be parametrized by w: |w| < /1 — (note that w, k¥ are in one-to-one relation given by (10)).

wr € (0, 1— %z) is determined as follows. Let k7 be the unique solution of

K(k)(2—K?)
(g

)(1+M(K)):T

_ 1
Then, wr = H—M—(K‘T)

Proof of Theorem 2. First, we will verify that the pencil given by (J, %) (or equivalently
the eigenvalue problem (17)) satisfy the requirements 1-3 of Theorem 1. The compactness of the

"Note that this is well-defined since J : Ker(H) — Ker(H)* and hence JH~!J is well-defined.
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operators in (18) follows from the compactness of the embeddings H>*[—L,L] < H'[—L,L] —
L?[—L,L). We take the operator

(1+|0y])3/4 0 0 0

G 0 (1+[0x])¥/* 0 0

' 0 0 (1+0¢])?/* 0
0 0 0 (1+0y])?/*

Clearly X = H3/*[—L,L] x H3/*|—L,L] x H3/*[—L,L] x H/*[—L, L] is dense in L*> x L> x L> x L2.
In addition, S~'JS~! is smoothing of order 1/2, S~! smoothing of order 3 /2, whereas S(H +
/l)_]S ,A >> 1 is smoothing of order 1/2. Thus, all the operators in question are compact in their
action on L? x L? x L* x L%.

Next, we will consider the spectral properties of the operator of linearization. Note that in
this case the operator of linearization .77 is in the form

0, 0 0 0
o 0 0 o
=10 0 0 ol

0 0 0 O

where
Q1 =—0d; +06 -3¢
0 =—d; +0— B¢’
Q3 = —d2+0— ¢
These operators are self-adjoint acting on Lpe,[O,ZT] with domain Hper[072T]. From the
Floquet theory, it follows that its spectrum is purely discrete

Vo< ViSEvm<vz<wy<...
where vy is always a simple eigenvalue. If ¢, (x) is the eigenfunction corresponding to v,,, then

¢o has no zeroes in [0,27];
®2n+1, P2n+2 have each just 2n+2 zeroes in [0,27).

Using (8) and (9), and taking y = ctx as an independent variable in Q1, one obtains Q; = o?A
with an operator A in [0,2K (k)| given by

2
+ 6Kk sn? (y; k) — 4 — K2,

M=-ga

where we have used the relation dn®(x; k) 4 k2sn”(x, k) = 1. The operator A is Hill’s operator
with Lamé potential. It is well-known that the first five eigenvalues of Ay = —8y2 + 6k%sn?(y, k),
with periodic boundary conditions on [0,4K (k)] are simple. These eigenvalues and corresponding
eigenfunctions are:

Vo=2+2k2 = 2VT—IZ+ K%, ¢o(y) =1 — (1+K2 — VT — K2+ k*)sn?(y,k),
vi =1+, $1(y) = ( Jk)dn(y, k) = sn'(y,k),

va = 1+4K%, $2(y) = sn(y,k)dn(y,k) = —cn' (y,k),
vi=4+k, 93(y) = sn(y,k)en(y,k) = —k~2dn' (v, k),

Vo =24+22 42V k2 + K4, 94(y) =1 — (1 +k2 + V1 =24+ k*)sn?(y,k).
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Since the eigenvalues of Q; and A; are related by A, = ov,, it follows that the first three
eigenvalues of the operator Q1, equipped with periodic boundary condition on [0,2K (k)] are simple
and A9 < 0,4; = 0,4, > 0. The corresponding eigenfunctions are ¢ (0cx), ¢ (0tx) = const.¢" and
¢2(0wx).

From (11), we have Q3¢ = 0 and since ¢ > 0 it follows that zero is the first eigenvalue of
operator 3, which is simple.

First we consider the case 0 < B < 1. We have Q, > Q3, and therefore operator Q; is strong
positive and KerQ, = {2}.

Hence, n() = 1, dimKer ¢ =2, and Wy = H_<i>H(O’O’ 0,0),y; = Hql)—,H((p’,O,O,O) € Ker .

The anti-selfadjointness of J yields (Jy;, y;) =0,i=1,2. By direct computations (Jy;, ;) =
0, i,j = 1,2. With this, we have verified that J : Ker(#) — Ker(#)*. Thus, in order to de-
termine the stability one needs to compute the index n((Id — J#~1J)| Ker(#))- For the (Id —

JAT)| Ker(#) We have the following matrix representation

U (((Id—fﬁlf)lffoyllfd <(1d—f=7flf)17/0,ll/1>)
T \(Ud—J7) wo)  ((Id— T ) )

We have
—2wQ; g 0
_ 1 0 _ 1 0
A Iy = — , AT = 1
]| 0 o'l | Q5 ¢'
0 0
Thus

U:< e (079,0) 0 >
0 I+ 050059, 9)

Since the operator Q3 is non-negative, then <Q3 0, 0)>0
Hence, the stability criteria is as follows

- Stability, if 1+ H ||2 (Q1 ¢, ) < 0 (one negative and positive eigenvalues of U, n((Id —
JA J) iKer ) =1

-Instability, if 1+ <Q1_1 @, ®) > 0 (two positive eigenvalues of U, n((Id —J.~'J)| Ker(#)) =

prH2
0)
Thus it remains to compute (Q;' @, @). We have Q;¢’ = 0. The function
oo [ ¢y
v = 9') [ s | o

is also solution of Q1w = 0. Formally, since ¢’ has zeros using the identities

1 1 dsnxx) 1 1 denxk)
cn®(y,x)  dn(y,x) dyen(y, k)" sn*(v,k) — dn(y, k) dy sn(y, k)

and integrating by parts we get

* ] —2sn?(as, K)
dn?(os, k)

1 1 —2sn?(ax, k) 5

y(x) = o dn(ax ) ox“sn(ox, K)cn(ox, K‘)/O
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Thus, we may construct Green function
011 =9 [ W ()as—y(s) [ 0/(5)7s)s+Cryt)

where Cy is chosen such that Qfl f is periodic with same period as ¢(x).
After integrating by parts, we get

2 T 0 2
(21) (' 0,0) = (0> ) + 7 ( );w ) (@, v) +Co(0, ¥),
We have
(9, ¥) = == [E(k) — K (k)]
(22) (9%, 9) = 5052~ KDE(x) —2(1 - K)K (K)]
Co = — L0, w) + £0E0,
With this finally we get
1 % E*(x) — (1 — k*)K>(x)
(0199 = 3 5 3T = ) K(K) — 2= K E(R)
We have
T 202 [K(k) 202
lol2 = [ gian ()= =2 [T ani(y wpdy = =B (x)
Hence
4wt _ w? (22— Kk)[E*(x) — (1 - K)K?(x)]
9 FH o' 00 = T G e (o) - 21 = @EK ()

1 1
(14+M(x) V(M)
Now if 1 < 8 < 3, then Q) < Q> < Q3. From Comparison Theorem, n(Q;) = 1 and KerQ, =

_ 1 — =
{0}. Hence, n(.7) = 2 and for |w| < T n(A)—nU)=1.0

Thus, the standing waves are stable if |w| > and unstable if |w| <

Now we will consider the spectral stability of periodic standing waves of the form (¢, @),
where ¢ is given by (13). We have the following result.

Theorem 3. Let B > 1. The two parameter family of dnoidal solutions (@, @), where ¢ described

in (13), are spectrally stable if |w| > m, and unstable if |w| < m, where

(2—x*)[E*(k) — (1 - k%)K>(x)]
(2—Kk2)E%(k)—2(1 — k?)E(K)K(K)

M(x) =

For0< B < land|w|>, /m’ the solutions (@, @) are unstable.
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Proof. Similarly as in the Theorem 2, we have that the pencil given by (J,.5) satisfy the
requirements 1-3 of Theorem 1.
Note that in the case ¢ = y the operator .77 can be diagonalized. Let

1 1 00
1 1
-5 5 0 0
— 2 2
B 0O 01 1
0O 0 0 1
Then
Ly 0 0 O
_ 110 L, 0 O
Ap=BAB " = 0 0 Ly 0|’
0O 0 0 Ij
where

Li=-9?+0-3(f+1)¢?
Ly=—0;+0—(3-B)¢?
Ly=-0d}+0—(B+1)¢%
Next, we list the spectral properties of the operator .77 and .7p. Since .7¢p is a diagonal operator,
with entries L;, i =1,2,3, we have that 6(p) = o(L;) Uo(Ly) Uo(L3). The operators L;, i =
1,2,3 are clearly Hill operators, so that the standard Floquet theory is applicable to them.
Using that k2sn?(y) +dn?(y) = 1 and formulas (14), we obtain

Ly =-0?+0-3(B+1)3dn*(ox, k)

=o? [—8y2 + 6125 (y, k) — (4 + Kz)} ,
where y = ax.

It follows that the first three eigenvalues of the operator L, equipped with periodic boundary
condition on [0,2K (k)] are simple.

From (11), we have that L3¢ = 0 and since ¢ > 0, then zero is the first eigenvalue, which is
simple with corresponding eigenfunction ¢. Moreover, L, = L3 4+ 2(8 — 1)@? and for B > 1, the
operator L, is strong positive and KerL, = {0}.

Hence, n(7) = 1, dimKer = 3, and ¥ = m((p’, ¢',0,0),%¥; = 1:(0,0,0,0), ¥, =

Mol
m(o,o,o, Q) € Ker .

The anti-selfadjointness of J yields (Jy;, y;) = 0,i = 1,2. Moreover, by direct computations
(Jyi, w;) =0, i,j=1,2. With this, we have verified that J : Ker(#) — Ker(')*.

No we will estimate the index n((/d —J%”_IJ)]KW(H)). For the (Id —J,%”_IJ)|KW(H) we
have the following matrix representation

((Id =T~ 0)\Wo,Wo) ((Id —JA 1Py, W) ((Id—J~1)¥y, ¥3)
U:= | {((Id—J7'\0)¥, W) ((Id—J# DY, W) ((Id—J710)¥,¥,)
((Id —J 1) W2, W) ((Id —JA 7 )Y, W) ((Id — T2~ 1) ¥, )

We have
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Lfi§0+Lz_1‘P
7Y, Lio—Ly ¢ ,
o'l 0
0
Lfiqo—ql(p
g, = | et e
ol 0
0
Thus
1+C 0 0
U= 0 1+A+B A-B |,
0 A—B 1+A+B
where 5 ) 5
2w 2w 2w
A=——(L"9,0), B (Ly'o.9), C (L', ¢")
[lo[[>*! R AR

The eigenvalues of the matrix U are p; = 1424, pp =1 +2B, p3 = 1+C. Since, L, is non-
negative and L3 is strong positive, then pp = 1+2B =1+ H(PH2< 51¢, @)>0and p3=1+4+C=

L+ 2 (L0 9) >0

Hence, the stability criteria is as follows
- Stability, if 1 +2A =1+ H<PH2< l_l(p, @) < 0 (one negative and tow positives eigenvalues

of U, n((1d — I ) ker)) = 1)
-Instability, if 1 +24 =1+ H<P||2< l_l(p, @) > 0 (three positive eigenvalues of U, n((Id —
JAH~ J)|Ker(%)):0)
Similarly as in the previous case, we get
w2 (2—-Kk2E*(x)— (1 —x%)(2—k*)K?*(K)
1—w?2 (2—Kk2)E2(x)—2(1 — k2)E(K)K(K)

pir=1-

1 1
1+M(x) 1+M(x)"

Now if 0 < B < 1, then L; < L, < L3. From the Comparison Theorem, we have n(L;) = 1
and KerLy = {0}, and n() —n(U) = 1. O

Thus, the standing waves are stable if |w| > and unstable if |w| <
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ABSTRACT: In this paper we present some properties of special kind of multiplicative inte-
grals playing an essential role in obtaining of the asymptotics of nondissipative curves, generated by

unbounded nondissipative operators A with different domains of A and its adjoint A* in a Hilbert space.

KEYWORDS: Nonselfadjoint operator, unbounded operator, dissipative operator, operator col-
ligation, triangular model, coupling, multiplicative integral

1 Introduction

In this paper we continue the presentation of some properties of special kind of multiplicative
integrals and this paper is a continuation of the papres [2], [3]. These properties of multiplcative
integrals play an important role in the further development of the investigations of nonselfadjoint
unbounded operators (with finite dimensional imaginary parts) based on the theory of the char-
acteristic operator functions and the triangular models of M.S. LivSic. The presented properties
are inequalities concerning the multiplicative integrals which are so-called limit values of multi-
plicative integrals connected with nonselfadjoint unbounded K’- operators A in a Hilbert space H
with differen domains of A and its adjoint A* and presented as a regular coupling of dissipative
and antidissipative operators with real absolutely continuous spectra. The triangular model of the
regular couplings of this class of nonselfadjoint operators has been introduced and investigated by
K.P. Kirchev and G.S. Borisova in [6, 7, 8]. In the course of investigations of these operators A (the
characteristic operator functions, the resolvent of A, the asymptotic behaviour of the corresponding
continuous curves) we use the properties of the multiplicative integrals from the form

b
2> 1+Aa()
(1.1) fe ) T(v)dv7

a

(A € C, A # a(v) for v € [a,b]), where o(v) is a nondecreasing real function in [a,b], T(v) is a
measurable nonnegative m X m matrix function, satisfying the conditions

b b
(1.2) /trT(v)dv < oo /||T(v)||dv < oo

The integral (1.1) is the multiplicative Stieltjes integral, defined as

L =

[e/WGWd —  Jim [T &/ (W(EO)—EO1)) =
a max AGr—0—1

— of(M)(E(61)—E(60)) of (2)(E(62)—E(61))  of (2)(E(6n)—E(6,-1))

(1.3)

Y

0
where E(6) = [ G(t)dt and the limit in (1.3) is taken over all the partitions a = 6y < 0) < ... <

a
6, = b of the interval [a,b] and all the choices of intermediate points 7; such that 6;_; < 7 < 6
(k=1,2,...,n), G(0) is integrable matrix function on [a,b] and ||E(68") —E(6")|| < |6’ —6"|.

*Partially supported by Scientific Research Grant RD-08-119/2018 of Shumen University.
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The limits of the multiplicative integrals from the form (in the sense of a strong limit)

b
—  —=iT(v) dv
s— lim [ev-G9)

6—0
(9 = <a> 2w
—iT (v —iT (v
— s— lim fe = v p£7T (x) f e —x v

-0 q x+68

are used essentially in the case of bounded dissipative operators [10], the case of bounded non-
selfadjoint operators, presented as a coupling of dissipative and antidisipative operators [5], the
case of unbounded nonselfadjoint operators, presented as a coupling of dissipative and antidissi-
pative operators and with equal domains of the operator and its adjoint [7]. The equality (1.4)
is proved by L.A. Sakhnovich in [10] and it is an analogue for the multiplicative integrals of the
well-known Privalov’s theorem [9] for the limit values for the integral

0
t
/ p_ dt
t—
in the scalar case.

The limits from the form (1.4) have been used for obtaining of the asymptotics of the so-
called continuous curves (or the processes) ¢’ f as t — oo, where A is a nonselfadjoint operator
in a Hilbert space H, f € H. For a dissipative operator A (i.e. the imaginary part of the operator
A is nonnegative operator) immediately follows that there exists the limit IEIEw(e”A f.e"f) (f €

—itA*

H). The explicit form of these limitis and the strong limits s — lim e ¢ has been obtained

t—+oo
(with the help of the limits (1.4)) in [5], [4], [7] in the the case of a dissipative bounded operator

A, in the case of bounded nonselfadjoint operators A, presented as a coupling of dissipative and
antidisipative operators [5], in the case of unbounded nonselfadjoint operators A, presented as a
coupling of dissipative and antidissipative operators and with equal domains of the operator and
its adjoint.

In the case of considered unbounded K’ - operators in the course of obtaining the asymptotics
of the corresponding nondissipative curves we essentially use the existence and the form of the
limit values of the multiplicative integrals (in the sense of a strong limit) for almost all x € [a, D]

b
— +(x£id)v
(1.5) s—lim fe vt T 5o
6—0¢4

2  Preliminary results

At first we will remind a proposition, obtained in [10], and the form of the limit (1.5), ob-
tained and presented in [1], [7], [8], which we will use in this paper.

Theorem 2.1. ([10]) Let m X m matrix functions (m < oo) T|(t) and T5(t) are integrable in [a,D]
and for almost all t in [a,b] satisfy the inequalities

Ti(t) — T (1)

, <0, k=1,2.
l
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Then

b,

-
fe_lTl (t)d fe—sz / ||T1 |dl
a

Theorem 2.2. ([1], [7], [8]) Let the matrix function T (x) is integrable and nonnegative in |a,b.
Then for almost all x € R there exist the limits (1.5) and they have the form

b

= Sy
s—lim [¢ 'v-Gre LY
(2.1) 6—>Oa

XS

V—Xx

=s5— lim fe - ()dv +r(14x?) fe P T () dy

84)0 a X+£
(6 >0,¢>0)

Let now o (x) be a nondecreasing unbounded real function, defined in (a,b) (—o <a < b <
+o0). Let IT(x) be a measurable n x m (1 < n < m,r < m) matrix function whose rows are linearly
independent on each point of a set with a positive measure and satisfying the conditions

b
(2.2) / tr B(x)dx < +oo, / |[TT(x)|[2dx < oo,

a

where B(x) = IT"(x)IT(x).
Let L:C" — C™, L* = L, detL # 0. Without loss of generality we can suppose that L has
the representation

(2.3) L=J1—h+S+S",

where J1,J5,5,8* : C" — C™,

(L, 0\ . (0 0 (00
(24) Jl_(() 0)7']2_(0 Im—rl),S_(:g\O )

I is the identity matrix in C* (k = r{,m —ry), Sisa (m—ry) X r; matrix, ri is the number of the
positive eigenvalues and m — ry is the number of the negative eigenvalues of the matrix L.
Let the matrix function B(x) satisfy also the conditions

B(x)J; = J1B(x)

and o (x)B(x)J> be an integrable matrix function on (a,b) (—o < a < b < +o0). Let us consider a
Hilbert space L?(a, b; C"), whose elements are vector functions f(x) from the form

F) = (@), /o), /), (f €L (a,)).
The scalar product in L?(a,b;C") is defined by the formula

b

(1.0) = [ Fx)g" ()

a
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We will denote by || || the norm of an operator function in C" and by || ||;2- the norm in
L?(a,b;C").

Let Q(x) be a measurable matrix function on (a,b) satisfying the condition
(2.5) (x)Q(x) =1

for almost all x € (a,b). Then the operators P and P, defined by the equalities
Pif(x) = f()I(x)1Q(x), Pof(x) = f(x)I1(x)J)20(x)

onto L?(a,b;C"), are orthogonal projectors in L?(a,b;C").
The model A, describing the class of K"-operators presented as a coupling of dissipative and

antidissipative operators with real absolutely continuous spectra and with different domains of A
and A* has been introduced in [6] and has the form

AF(x) = AGg(x) = a(x)s(x)+
i 6)(a(E) HTEM: [P ATT () ()~ )

@6 —ifg@)(a(é)w)n(é)pge"“(”BZ(”‘“Jzn*(x)(a(x) —i)dE+

T (&) (@) + ) <5>sze ol d”déSfeBl sy T ),

a

where G is an invertible operator in L?(R; (C") and

2.7 G=I1+PKP,

KPyg(x) = ,
o — i e al) + i)H(&)nge_w‘(v)BZ(V)dVdﬁSzeBl(V)dVJIH* (%),

a

Bi(x) = B(x)J1, B2(x) = B(x)Ja, for each f(x) = Gg(x) € L?>(R;C") such that Af € L?>(R;C").
Using the form of the projectors P, P, the model A, defined by (2.6), takes the the form

(2.9) Af(x) =AGg(x) = PIAP1g(x) + PAP,g(x) + iKP>g(x),
where K is defined by (2.8) and
PLAPg(x) = o(x)g(x)I1(x)J1 Q(x)+

X,
X —

+iafg(€)(06(€)+) (i)Jlge’“ VBT () (eu(x) — D) dE,
PAPyg(x) = o(x)g (x)I1(x)20(x) —

(2.10) —iaf g(&)(a(8)+ i)H(é)Jzzef“<V>BZ<V>dVJzH* () (ae(x) = )dE,
P1;4P2g( x) =

= [a(&)(a(&)+in (é)Jzéfe e dvdéSfeBl ML (2),
PZAPlg( ):0
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and Dy = G(Da, ® Ds,) C L?*(R;C"). The representation (2.10) and straightforward calculations
show that A; = PjA is a dissipative operator onto P G_lDA and A, = P»A is an antidissipative
operator onto PG 'Dy=P.Dy = Dy, . In other words

Im (A]P]G_lf(x),Pl G_lf(x))

>0, (f€Da),
Im (AyP,G 1 f(x), .G f(x)) <

0,
0, (f S DA)
The representation (2.9) implies that A is a regular coupling of a dissipative operator and an an-
tidissipative one, i.e.

A= A1P1G_l + AP, +iKP>

and A =A;| VAj.

The model A, defined by (2.6), is a closed densely defined operator as a coupling of a dissi-
pative operator and an antidissipative one with real spectra.

For our further considerations we need the resolvent of the coupling of the model A, defined
by (2.6). It turns out that for each A : Im A # 0 the operator A — A[ is invertible and the explicit
form of the resolvent can be obtained. In the case o (x) = x when A # i the resolvent (A — AI)~!
is given by the next theorem.

Theorem 2.3. (/8]) The model A, defined by (2.6), has the resolvent

(=AD" 100) = gy

o(x)—A
X i = _jl+ral) v)dv % x)—i
S emE e R e
() TR B v e e
@2.11) ‘H_fw a(g),lf(é)n(é)-lzgfe () =& d&J,IT*(x) FIEE)
R ; Bwl.wm(v) Ddv
s [ O [ s
DA g A
[e a2 B1(v)d ST (x) o?((x))—k

—o0

for each A :Im A #0, A # i, for each f € L>(R;C") and the resolvent is a bounded operator in
L%(R;C").

The model (2.6) generates semigroups of operators {T; },<o and {7; };>¢ from the class (Cp)
with generators iA (see [8], [7]), defined by the equality

Tf(x) = b [ M) (A (& —i8)1) f(x)dE+
(2.12) I
b [ eHERO A (& 1 i8)1) f(x)dE

—o0

in the sense of a principal value where f = (A — A9I)~'g for all g € Dy, Ag is an arbitrary fixed
number with Im Ay > 0, 0 is an arbitrary number with 0 < § < Im Ay when ¢t > 0 and Im A < 0,
0< 6 < —ImAywhent <O.
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The explicit obtaining of the asymptotics of the corresponding nondissipative processes T; f
as t — +oo allows to construct the scattering theory (as in the bounded case of the model A in
[5]) for the couple (A*,A): in other words to obtain the wave operators W (A*,A), the scattering
operator and the similarity of A and the operator 2 of multiplication by the independent variable.
All results are obtained explicitly in [6], [7]), [8] using the multiplicative integrals, their properties
and matrix generalization of the classical gamma-function, introduced in [5].

3 Main results

The presented properties of the multiplicative integrals in this paper and in [2], [3] play an
important role for obtaining the asymptotics of the corresponding nondissipative processes 7; f as
t — foo,

Let m x m matrix function 7 (x), defined on R, satisfy the conditions:

) [IT()]| < C. [T ()] < C Vx e R;

(i) T(x) € Coy(R), xT(x) € Co,,(R) O < o) < 1,0 < 0p < 1) (ice. ||T(x1) —T(x2)|| <
C|X1 —X2|a1, HxlT(xl) —XzT(Xz)H < C\xl —Xz‘az Vxi,x € R).

Here C is a constant and we denote by || || the norm in C™. Let now o¢ = min{ ¢, 05 }.

Further we will introduce some appropriate denotations. Let us denote the next operators
using the multiplicative integrals and the limit values from the form (2.1):

(3.1) T(x) = (14+x*)T(x),

6 l+wcdv

(3.2) Wy (x) = s — lim fe vy T LR i xa—5-w),

6—0 4y

for all w,u,x such that —co <w < x <u < oo,
Then the next theorem is true.

Theorem 3.1. Let the nonnegative or nonpositive matrix function T (x) be integrable matrix func-
tion on R and satisfy the conditions (i) and (ii). Then

33) 2 (0) - @)l < €0+ ) (=)

for some constant C > 0, for all w,&,x:w < & <x,0<x—w<land &/ = a/(1+ ).

Proof. From the form (3.2) of the operator function %%,,(x) we have

— x—8
*> 129 X %dv .
| %o (x) — Uan(E)|| = || | € T W)dvy T e~ iT(x)x(x=6-w) _

P 4vE iT(é)gsz‘édv
[T T T r@ee-s-w|| <
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(3.4) , Hefﬁ(x)x(xfé—w) H n

69 e p 14+v€ v
it (e TE) [ STgd .HefiT(x)x(xfb‘fw)_efiT(é)g(éf‘S*W)H <

[ fe & <
w
x—38 x—8 &6 5_51 &
= law iT(x) [ TP%dv T e iT(&) [ Jtgdv
<\ s e—z%T(v)dve A ~fe o T(v)dve J=E .
w w

4 || T @rtr=8-w) _ p=iT ()5 (5-5-w) H _

In the last inequality in (3.4) we have used that the matrix function 7' (v) is selfadjoint on R. Now
we consider the second addend in the right hand side of the last inequality in (3.4) and we obtain
that

oI T(X)x(x—5-w) j Ly — ¢ T()(E-6-w ji Lay
1 1

o~ Tx(=8-w) _ (=T (£)E(E~5-w) H -

<

< ULt TRIEE Sy < 7 (x)x(x— 5 —w) - T(E)E(E -6 —w)l| =

= |IT(x)x(x =8 —w) =T(§)§(z=8—w) +T(5)5(x = —w) =T (§)E(E -6 —w)|| <
<TE)x =TSS5 x =8 —w|+[|T(S)S][|(x =6 —w) = (6 =6 —w)| <
SCr=§)M+C(x—§) =Clx—E)M +Cx— )M (x =) =% <
SCx—E)M <Ci(x—g)* <Ci(x—&)”

(for some appropriate constant C; > 0, for all o’ : 0 < &/ < & < 1), where we have used Theorem
2.1. Consequently we have obtained the inequality

(3.5) He—"T(X>X<x—5—W> ¢T3 (E=8-w) H <C(x—&)Y (Vo:0<a <a<l)
On the other side in the case, when g:i > 1, we have
¢ o
(3.6) HefiT(x)x(xf5fw) _efir(g)g(gfsfw)H <r<aX _

In the case when J);C_va < 1, using (3.5), we obtain

o Tx(x—3-w) _ ,—iT(€)E(E-5-w)|| <

=GG-g) =6 (g:i)a, (E-w' < (gfv)a

(3.7)

!/

for some constant C; > 0and Vo' : 0 < o/ < a < 1.
Now we consider the first addend in the right hand side of the last inequality in (3.4). Then
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=9 iT 0 g, S0 & iT P g d
f e*i%T(V)d"el (x) i{ EE - f e—iﬁT(v)dvel () ;{ v—g 4V
w w B
x—0 x—4 E-8 1
= 14w iT(x) [ $2%dv = in (x) [ td
(38) S f e 5= T(V)d\/e w _ f e v T(V)dv +
w w
£-¢ n 1+ ¢-8 . 68 14+vE
Afvr de — . 14vE T d
4| [ e ihErom, T e [ B TON TE) S
w w
Next we obtain that
x—4 = x §-9 57'8 vx
£ iT (x) vjy lvtx dv B —>e llf_‘;cT(V)dV iT (x) é lvtx dv

E-§8 x—0 _iT H—vxd . N
<|| [ e TTWay fe—z‘VtV;T(v)dv . R ST Lo gy -
w £os
x—0 . xX— Lo
- Advx —iT(x) [ S25d s
< fe*lljfxT(v)dv_e £=s < f H%T() 1+vxT Hdv—
&£-¢ 7
= f | L2 2 (v) = T (x) ||dv <

||T T ()| [T () —vx (v)]
gf = dv+§f6 ] dv <

B g g f ? |7 () <sz§|2r<x>—vﬂ<vmdv§
=
<c f G g, +xf o T QT T Oy <
= =
x—0 x—0 =8,
<C [ (x=v)@ldv+C [ dv+Cl| [ B2y <
-5 &5 £-5
x—0

c(1+ |x|)§;f8(x—v)“1dv+C(x—§) <G(x—¢6)"

<o+ ()" <o+ ()

x—0
<C [
55

/

for some appropriate constant C; > 0 and Vo' : 0 < o' < o < 1. Consequently for the first addend
in the right hand side of the inequality (3.8) we have

x—8 E-6
iT(x) [ v
w — e
w

_ §-o

—> ; Itvx
f H—VXT d e —i lvt\j?cT(V)dvelT(x) ;{‘ V—x dv
w

(3.9)

<O+ ) (55
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for some appropriate constant C; > 0and Vo' : 0 < o’ < o < 1.
Let us choose the number ¥ such that 0 < y< l and (x—&)" > 8 (i.e. E — (x— &)Y <x—9)
for an arbitrary sufficiently small fixed number 6 > 0. Now we consider the second addend in the

right hand side of the inequality (3.8):

(3.10)
_ £-5 _ £-5
éfse_iler_V;T(V)d"eiT(X) J{ de_gfse—ilvt?T(V)dveiT(é)v{ lvtvgdv
w w
£ 8 S &5 i 7 Ly
< [ oI EET(v)dv _ I e—i‘t"éT(v)dV ‘ I =1 EEET () ezT(x) S SEdy N
| W E—(=E)"
E-(=8) &5 &8 "
H [ eETOM [oetmTea [ it |, ) [
w c—(x=8)Y §—(x=g)7
£-5
§-o E-5 T g =5
N fe_llvtvgéT(v)dV eilvtvégT(")dV_el (é)gf(x{g)y v—& @V elT(X)»{ 1‘+de
w —(x=8)
= 1@ T Sl ||t e et ey
+1 gTOav) 1l " eweg) e —e <
w
—(x= c—(x=8)"
S f H<1+vx 1+v§>T(v) dv+ f 1+vx} ||T (g)Hdv_’_
w w
e—(x=8)" c—(x=8)7
e @y T B - BT (6| av
w w
Using the following denotations the relations (3.10) can be written in the form
&8 £-5 ' §-6,.
f esz‘XT V)dv e iT (x) v{ %dv_ Te_i%T(V)dvelT(é) v{ lvtg’:dv <
w
S-la=e) 1+vx 1+v€ H—vx
ein < 1 ||(B ) To) ae, (J" R LI 0) =T @) v
g0 §—(x=8)"
v L, o -r@ne e - LET(E)|dv=
—(x— w
=hL+bL+5L+14.

At first we consider the right hand side of (3.11) in the case, when

g:igl.

Then for /; in (3.11) we obtain
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- 2 o

E-(-E) e L
< ||T(V)||mdv+ [ T ()] <
. 5—(x—§)71 E—(x=8&) (v
SCa-&ky [ At CUH)a—8) [ vt

SO )
+C(A+x)(x=8) J e =

<G+ =) (—yIn(x— &) + (x—&)*T+1) <
< CG(1+ ) (= &) (| In(x = &)+ (x = &) ¥ + 1),

where C3 and C4 are appropriate constants. The last inequalities imply that
(3.12) L <Cy(1+ ) (x = &) T(|In(x— &)+ (x— E)*V +1).
Next for I, from (3.11) it follows that

¢
h= [ PEET0) - T(E)ldv <

ey, P e, o

£
<C [ (x=v)*lav+Clx| [ (x—v)*av+Clx] [ (x—v)*lav<
=) : §—(x=8)7 §—(x—=8)7
-5
<G+R) [ (r=v)*ldy <Gl +|x])(x — §)*

for appropriate constants Cs and Cg. Consequetly
(3.13) L < Ce(1+ |x])(x—&)*Y.

Now for I5 from (3.11) we obtain

Lt
v—E

£~
L= [ T W) =T (&)[ldv <

c—(x=8)7

< f HT(% () ||dv—|—|§| éfé \|VT(V)*§T(§%t§vT(§)*VT(§)|\dvS
- c—(x=8)7
° S0 cene T
<C (E—WA-ldy+(|E—x|+x]) [ (E—v) 'éi‘(fv V)l (é‘ldv<
E—(x=g)7 §—(x=g)7

¢
<Cc || (é—v)a_ldv+2C(l+|x|) i (ﬁ—v)“‘ldvg
Solme s E— (-8
<C(+]) [ (E=v)*ldv=Cs(1+]|x])*7
E—(x=8)Y

1.e.
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(3.14) I < Cg(1+[x])*"

for some constants C7, Cg > 0.
For I in the inequality (3.11) after straightforward calculations we obtain

S—(x=8)7

L=
S8 irw @)l L 1| M@ -ETE@)]

<y (MWl 7)) E‘E‘+ TN 4 eT (&)

E--8)7 -8y
SCx=8)* [ Sdv+Cx=8) | mEmdrt

S
+Cx—8)* [ HEEdvHCx=§) [
E—(r—E)Y E—(r-E)7

<C(x=&)* J ﬁdv%—C(x—é)l"’ [ Ldv+

§--8) R
FC(x=E)*(1+x) [ Hdv+Cx=)" "0 +]) [ Hav<

w w

LT ()~ SRR T(8) | av <

V—Xx

——LDdVS

1
v—x  v—§

3
SGU+R)((x=8)*+ (=)' [ Hdv=

w

= Co(1+ ) ((x = )+ (= €)' 7) (yIn(x— &) +In(E —w) +1n 1
< Cio(1+ ) ((x = )+ (= &) 7) (| Inr— &)+ 55

for some constants Co, C1g. Hence

_ X —
319 B Ol k(- % -0 (Imer- Ol + 5 ).
Let us choose o' = min{ay, 1 — y}. For example, if v = 1J+a, then o’ = . The inequal-
ities (3.10) and (3.11) together with (3.12), (3.13), (3.14), (3.15) and the choice o' = % imply

T+a
that

E-§ &6 E-8 0.,
T ey T A indr g iT(E) [ SRy
eflﬂT(V)dve w — e lvfi T(V)dve w & S
(3.16) W W

<Cri(1+Jx]) <?_i>a/

(C11 > 0 is an appropriate constant). In the course of proving the inequality (3.16) we have used
the inequality

1
\lnylgﬁy’ﬁ for B>0, 0<y<1.

Now in the case when g_va < 1 from the relations (3.4), (3.6) and (3.16) for o’ = % it
follows that
x=§ x—8 E-5 &6
- +14vx iT Ly — 14+vE iT ﬂd
fefllerfxT(v)dvel ) v{ v—x 4V feil th T(v)dvel () V{ v—¢ @V <
(317) w w

al

<1+ (£5)

- 111 -



Borisova G., Popova R., Shuman N., Todorova G.

In the case > 5 > 1 from the properties of the multiplicative integrals when 7T'(x) is selfad-
joint matrix fnctlon 1t follows that

X— x—0 E-8 E-48

_> VX iT ' lervxd — 7'1 v§ iT ' H—Véd !
(318) || J e RO LS g o TE RN < < (5£)

w w

The inequalities (3. 17) and (3.18) imply that there exists a constant C > 0 such that the

inequality (3.3) is true for o = %5 + 7w <& <x,x—w < 1. The theorem is proved. ]

The inequality (3.3) together with other similar nequalities, presented in [2], [3], play an
essential role in the process of obtaining the asymptotics of nondissipative curves generated by
unbounded operators from the class K" with different domains of the operator and its adjoint and
presented as couplings of dissipative and antidissipative operators with real absolutely continuous
spectra.

Finally, it has to be mentioned that (3.3) and all presented inequalities in [2] and [3] are
satisfied when T (x) is nonnegative or nonpositive operator function in infinite dimensional space.
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ON THE COMPOUND BINOMIAL DISTRIBUTION*

KRASIMIRA Y. KOSTADINOVA

ABSTRACT: In this paper a compound binomial distribution with geometric compounding
distribution is analyzed. We derive some of its basic properties, recursion formulas and probability mass
function. Then, the method of moments estimation for parameters of a compound binomial distribution

is applied.

KEYWORDS: Compound distributions, geometric distribution, binomial distribution, moment
estimation method.

1 Introduction

In the present paper we consider a compound probability distribution, which has the form
(D N=X+Xo+...+X7.

Here the random variable Z belongs to the class of the Generalized Powers Series Distributions.
The binomial, negative binomial, logarithmic series and Poisson distributions belong to this class,
see [10]. The random variables X; are independent, identically distributed as random variable
X, which has a geometric distribution with parameter y € (0,1). In [3] is defined a compound
Generalized Powers Series Distributions, where the compounding random variable X has a shifted
geometric distribution with parameter 1 — 7, denoted by X ~ Ge (1 —7), y€[0,1).

In the insurance risk theory, some of the Generalized Powers Series Distributions are used
for the number of claims during a given time period. The random sum N is interpreted as the
aggregate claim amount in the risk model and we say that the random variable N has a compound
distribution. When Z has a Poisson distribution, then the random variable N has a Pélya-Aeppli
distribution, see [2]. When Z has a negative binomial distribution, then the random variable N has
a compound Pdlya distribution, see [4].

In the literature there are many generalizations of the classical risk model. One such gener-
alization is by compounding of the counting process, which is the homogeneous Poisson process
in the classical risk model. For example in [7] is defined Pdlya-Aeppli process. Another such
generalization is by mixing, see for example [1], [5] and [6].

The rest of this article is organized as follows. In Section 2, we consider a compound bino-
mial distribution and derive its probability mass function, some properties and recursion formulas.
In Section 3, the method of moments estimation for parameters of a compound binomial distribu-
tion is given.

2 Compound binomial distribution

In this section we consider the random sum (1), where the random variables X; are inde-
pendent, identically distributed as random variable X. In this paper, we suppose that the random
variable X has a geometric distribution with parameter y € (0,1), denoted by X ~ Ge(7y). The
probability mass function and probability generating function of the random variable X are given

by

2) qi:P(X:i):}/(l—’Y)i, i=0,1,...

*Supported by Scientific Research Grant RD-08-145/2018 of Shumen University.

- 113 -



Kostadinova K.

and
3) Wl(s):T7 s <7

Let the random variable Z is independent of the random variables X;, i = 1,2,... We suppose
that the random variable Z has a binomial distribution with parameters n € N and 6 € (0,1),
denoted by Z ~ Bi(n,0). Then the random variable N has a compound binomial distribution with
compounding random variable X.

The probability mass function and probability generating function of the random variable Z
are given by

) P(Z=i)= (’:)ef(l—e)"—", i=0,1,....n
and
(5) yz(s) = (1-6+6s)".

Then the probability generating function of N is given by

(6) y(s) =yn(s) = (1-0+0yi(s))",
where i (s) is the probability generating function of the compounding distribution, given by (3).

Definition 2.1. The probability distribution of the random variable N, defined by the probability
generating function (6) and compounding distribution, given by (2) and (3) is called a compound
binomial distribution with notation N ~ compBi(n, 0,7).

Remark 2.1. The mean and the variance of the compound binomial distribution are given by

£ =020,
Y
LS TSRS
For the Fisher index of dispersion we obtain
Var(N) (1-7)(2-6)
FI(N) = =14+ T,
N ="Ew) Y

i.e. the compound binomial distribution is over-dispersed.

It is known that when FI(N) < 1, the distribution is called under-dispersed. When FI(N) =
1, the distribution is equi-dispersed and when FI(N) > 1, the distribution is over-dispersed, see [8]
and [12].

From Remark 2.1 follows that the compound binomial distribution is over-dispersed related
to the Poisson distribution, which FI(N) = 1. This makes the compound binomial distribution
suitable for financial data.
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2.1 The Probability Mass Function

The probability function of the random variable N is given by expanding the probability
generating function y(s) in powers of s. Denote by f(i) = P(N =i), i =0, 1,..., the probability
mass function of the random variable N. We rewrite the probability generating function of (6) in
the form

m=0
(i) IVy(s) . -

Denote by y\"(s) = 5 fori=0,1,..., the derivatives of y/(s). From (7) we get the follow-

s
ing

m:1 (1 - Y)S)’”*" '
From [2], it is known that
(@)

©) =¥,

Theorem 2.1. The probability mass function of the compound binomial distribution, denoted by
N ~ compBi(n,80,7), is given by

f0) =(1-6+67),
(10) .
f@) == L )" On) 10y i=12,...

Proof. The initial value f(0) = (1 — 6 + 67)" follows simply from the probability generating

function y(0) = £(0). Then (10) follows from (8) and (9).
O

On Figure 1 is given a graphic of the probability mass function of the binomial distribution,
denoted by Z ~ Bi(n,0). On Figure 2 is given a graphic of the probability mass function of the
compound binomial distribution, denoted by N ~ compBi(n,0,7). A graphic of the probability
mass function of Z ~ Bi(n,0) and N ~ compBi(n,0,7) is given on Figure 3. All these graphics
are made forn =20, 0 =0.7 and Yy =0.5.

From Figure 2 we see that the tail distribution is longer than the tail distribution on Figure
1. From Figure 3, one can see that the tail of the compound binomial distribution becomes heavier
than the tail of the binomial distribution.

The following proposition gives an extension of the Panjer recursion formulas (see [9]).

Proposition 2.1. The probability mass function of the compound binomial distribution satisfies the
following recursions

i—1
A1) (1-6+07)if()=0-9)|(1—-0)(i-1)fi—1)+n0 Y qif(i—j—1)|,i=2,3,...

j=0

and f(1) = 1241 g0 £(0) with f(0) = (1— 6 +67)".
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Figure 1. The PMF of Z~Bi(20, 0.7)
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Figure 2. The PMF of N~compBi(20, 0.7, 0.5)
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Figure 3. The PMF of Z~Bi(20, 0.7) and N~compBi(20, 0.7, 0.5)

Proof. Differentiation in (6) leads to

Iy (s) no(1-7)
(12) i (1_9)(1_(1_Y)s)wywl(s)w(s),

™=

n N i 0y(s
where y(s) = ¥ f(i)s', 24 =

(i+1)f(i+1)s, and yi(s) = E‘, q;s’. The equation (12) has
i=0 i=0 Jj=0
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the form

n

(1=0)(1—(1-7)9) +07 L (i+ DA+ 1) =nb(1-7) £ ()5 T g6

= j=0
Changing the variable from i+ j=1=1i=1[— j, yields
n oo n+j

(1=0)(1 = (1=7)9)+ 0 L (4 Dfi+ 1) =n0(1—7) T gy ¥ 71— )5

Interchanging the order of summing in the double sum and equivalent transformations results in

. n+1 .
1-6+07 £ (+ f(i+1)s = (1-0)(1-7) ilif(i)s’
00 -7) | L X qifi-)+ L ¥ afli=)| s
=0 j= I=n j=1—n

The recursions (11) are obtained by equating the coefficients of s* on both sides for fixed i =
0,1,2,... For i = 0 follows that

n6(1—7y)

=167 6y

q0f(0).

Fori=1,...,n

(=04 07)(i+ fG+1)=(1—7) | (1-0)if() +n0 Y a;f(i— )|,
j=0

and hence (11).
O
In the next proposition we give an alternative recursion formulas.

Proposition 2.2. The probability mass function of the compound binomial distribution satisfies the
recursions

(1-0+6y)if(i) =(1—-y)[(i—1)(2-20+07y)+n0Y]f(i—1)
(13)

—(1=7)?(1-6)(i—-2)f(i—2),i=2,3,...

and f(1) = 241 £(0) with £(0) = (1— 6+ 67)".

Proof. Differentiation in (6) leads to

B no
N 1—9+91,U1(S)

(14) v (s vi(s)w(s),

~—

where y(s) = f f(i)s', alggs) = f (i+1)f(i+1)s', and
i=0 i=0

roy . A=7y
Vi) = i
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is the derivative of (3). So, the equation (14) has the form
(1-8)(1 = (1=7)9) +67(1 —(1-7)9) £ -+ Dfi+ )5’ =n6y(1 =7) L ()"

or equivalently

(1-6467) io(i+ D+ =(2-20+67)(1 —y)'}il if(i)s'
~(1=72(1-6)E (1= 1)fi= s/ +n03(1 ) £ )5

The recursions are obtained by equating the coefficients of s' on both sides for fixed i = 0,1,2,...
O

3 Method of moments
3.1 The Procedure

Let X1,X5,..., are independent, identically distributed random variables, which have some
distribution. Then the kth moment of the distribution is defined by

e = E(x").

For example u; = E(X) and u, = Var(X) + (E(X))>.

The procedure follows these four steps (see for example [11]):

1) If the model has m parameters, we compute m moments, L, HUs,..., M, and obtain m
equations with m unknowns.

2) Then we solve so that these m parameters as a function of the moments, i.e. every param-
eter we express by i, i =1,2,...,m.

3) After that, based on the data X = (X1, X>, ..., X,), we compute the first m sample moments,

n

v 1

4) We replace the distributional moments i, by the sample moments X",

3.2 Example - compound binomial distribution

Let us denote by u; = E(N¥), the kth moment of the random variable N. Using that

Hi = y )
1-7)(2-6
o =E(N?) = 1+u1+% ;
3
/,LSZE(N3):(:Tl)2[(n—l)(n—2)92+6(n—1)9+6}—1—31.12—2/.11,

by the method of moments for the parameters n, 6 and Y of the compound binomial distribution,
we obtain
(X)2[2XX2 + 2X2(X)2 = 2(X)* — (X2)2 = (X)* — (X)* F |ulv]

"= u(v: =+ |ulv) ’
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P—— n
and Xk=1% xk k=123
i=1

Table 1.
Observed
370410
43000
3930

300

27

3

0

NN BN —| O ~.

v

Taking the data from the Table 1 we obtain the following moment estimates for the parame-

tersn,0 and y: n =2, 6 =0.972 and ¥ = 0.937.
Concluding remarks

In this paper we have introduced a compound binomial distribution as a compound binomial

distribution with geometric compounding distribution. Also, we find the moments, the recursion
formulas and probability mass function and then the method of moments estimation for its param-
eters is applied.
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NUMERICAL COMPARATIVE ANALYSIS ON THE CLASSICAL
VASICEK MODEL FOR DETERMING THE ZERO COUPON BOND’S
PRICE

MEGLENA D. LAZAROVA, SYLVI-MARIA T. GUROVA

ABSTRACT: In finance theory different models aiming to prognose the price of a given bond
are considered. The finance modeling constructs an abstract introduction of a model that can describe
the real world financial condition. This is a mathematical model that can be used to introduce a
simplified version of the extension of the financial assets or a portfolio of business project or another
investment. Usually the finance modeling is concerned with the exercising of the assets’ prices or
cooperative finances of a quantative nature. In the present paper we consider the classical Vasicek
model without a risk factor and the classical Vasicek model with a risk factor. We give three
numerical experiments for determing the zero coupon bond’s price. The first one takes into
consideration that the market price of risk is not changing. The other experiments are made for
different values of the market price of risk.

KEYWORDS: finance modeling, interest rates, bond’s price, zero coupon, stochastic
differential equations, partial differential equations

1 Introduction

In finance Vasicek’s model is a mathematical model which is describing the random
movement of the interest rates. The most universal model is the single-factor short-term model
which is describing the random movement of the interest rate influenced by one source of a
market risk. Oldrich Vasicek, see Vasicek (1977), [7] introduced this model as a stochastic
investment model. In the classical Vasicek model the movement of the interest rate is given by a
stochastic differential equation. i.e it is defined by a diffusion process. The assumption that is
used in the model is that the bond market is a non-arbitrary market and that there exists a risk-
free portfolio with a quantity W. The arbitrary argument is similar to that used in the Black-
Scholes model for determing the put and call option’s pricing. The main purpose in the classical
Vasicek model is to determine the zero coupon bond’s price at time t with maturity T. As this
price can changes in time quite accidently it can be interpreted as a stochastic process for which
the Ito’s lemma can be applied.

In this paper we consider two financial models. The first one is the classical Vasicek model
without a risk factor and the second one is the classical VVasicek model with a risk factor. For
these two models we consider the zero coupon bond’s price which is determined by using the
apparatus of the stochastic differential equations and the partial differential equations. As there is
a connection between the stochastic differential equations and the partial differential equations
and it is obvious from the Fayman-Kac’s theorem, see Oksendal (1998), [4] it is a good way to
determine the final bond’s price. We introduce a numerical comparative analysis and give some
essential results. The analysis is made thanks to the partial differential equations given in the
models with a specific boundary condition.

In section 2 we consider the classical Vasicek model. For this model we pay a great
attention on the market price of risk and the value of the zero coupon bond. A numerical analysis
and some comparative characteristics are made in Section 3. Some concluding remarks are given
in Section 4.
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2 Aclassical Vasicek model

The main application of the classical Vasicek model, see Nazil M. N. (2009), [3] in finance
is to determine the zero coupon bond’s price using the fact that the interest rate is following a
stochastic differential equation. Usually this model is used for a valuation of interest-rate
derivatives and it is also adapted to the credit markets. It is one of the earliest and the simplest
term structure models based on increasingly realistic assumptions about the random movement
of the interest rates.

Let r, , a>0, >0 and u are real constants. In the classical Vasicek model the
interest rate is given by:

(1) dr(t) = a(u—r)dt + odW, with an initial condition r(0) =r,,
where

r - the instantaneous short rate interest

o - the speed of mean reversion

4 - the long-run expected value for the interest rate r

o - the instantaneous standard deviation of the interest rate r
W, - a standard Wiener process with mean 0 and standard deviation 1

The stochastic process used by Vasicek is known as the Ornstein-Uhlenbesk process. The
first term in the stochastic process proposed by Vasicek pulls the short rate r back towards . So

4 can be thought of as the long-run level of the short rate. When the short rate r is above u, the

first term trends to pull r downward since « is assumed to be positive. When the short rate r is
below x then r trends to drift upward. The impact of the mean reversion is to create realistic

interest rate cycles with the level of o determing the length and the violence of rises and falls in
interest rates.
The expression a(u—r) in the classical Vasicek model is called a drift. It is the expected

moment change in the interest rate in time t. The constant « is called a rate of drift adjustment
and the constant « a level of drifting. The definition a level of drifting comes from the fact that

the drift a(x—r) depends on that if r> x or r < u. If the inequality r > & holds then the drift

is negative as the constant « is always a non-negative constant. In this situation the trend of the
interest rate is moving down to the equilibrium. Conversely if the inequality r > x holds then the

drift is positive the trend of the interest rate is moving up to the equilibrium.

Let P(r,t,T) be the price value of a zero coupon bond at time t and maturity T. The price

depends from the interest rate movement and also the market value of the price reflects to the
market expectation of the interest rate in the future. By Ito’s lemma we obtain the following
movement in the price of a zero coupon bond:

2 dP(r,t,T)=Rdr+%Prr(dr)2+Ptdt,

2
and P :—a P(r.tT) )

oP(r,t, T
where Pr zg’ P :M ' 2
ot or

or !
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Taking into account that dr(t) = c(x—r)dt+odW, and substituting in (2) we obtain the
following equation for the zero coupon bond’s price:

3) dP =P [a(u—r)dt +odW,] +% P.o%dt+Pdt

The calculations are obtained thanks to the following differential table:

X dw, dt
dw, dt 0
dt 0 0

ie (dW,)*> =dt, dW,.dt=0 and dt.dt =0, see Stoyanov (1978) [6].
In the further exposition of the model is extremely important to find a formula for the zero
coupon bond’s price P(r,t,T). The realization of this task is achieved by the assumption of that

the bond market is non-arbitrary. Let on this market an investor forms a portfolio with a quantity
W which includes a unit quantity of a zero coupon bond 1 with maturity T, and a quantity w of a

zero coupon bond 2 with a maturity T, . Then the portfolio’s value is given by:

@4  W=P+wP,

where B, is the zero coupon bond’s price of the first portfolio’s bond and P, is the zero
coupon bond’s price of the second portfolio’s bond. Then the change of the portfolio’s value in
time is given by:

(5) dW =dR +w.dPR,,

We write the Ito’s formula separately for the differentials dP,, dP, and obtain the
following partial differential equations:

dP, =R, dr +% P, (dr)® +P, dt = P, [a(u—r)dt +0'th]+% P, o®dt+P dt
dP, = P, dr +% P, (dr)*+P,dt =P, [a(u—r)dt +0'th]+% P, o’dt+P, dt

We substitute the obtained values of dP, and dP, in the stochastic differential equation (5)
and after that we obtain the following equation:

6  dw :E R0’ +Ra(u-1)+R, +WP2[}dt+wB P, 0"+ Pzra(,u—r)}dt+(l31r +WP, )odW,
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If the coefficient in front of the differential dW, is a zero i.e. Pl +W-|:’2r =0 or

P
W= —P—l', then we say that on the market is forming a riskless portfolio. Once the risk has been
2

r

removed the change of the portfolio’s value in time is given by:

7 dW =(rP, +rwP,)dt

!

Equating the right sides of the equations (6) and (7) and substituting by w=—P— we

2
obtain the following equation:

(8) rP—iPr—lP o’ +P a(u—r)+P _h P —laziP —iP a(u—r)
1 Pzr 2 2 L 1 ’Ll L I:)2r Ty 2 I:)2 T2 P2 T2 'Ll

r

After simplifying and dividing by P, .o we obtain the following equality:

;azpl” +a(u—-r)B +P, —rR ;azpzn +a(u—r)P, +P, —rP,

9 = )
© ob, oP,

T r

i.e. the market price of risk is given by:

Eazprr+o¢(y—r)F>,+F>t—rF>
=2

oP

r

The market price of risk A is assumed to be constant. From the last equation we obtain the
partial differential equation of the zero coupon bond’s price for the classical Vasicek model of
the form:

(10) %GZPN +[a(u—r)+Ac]P + P, —rP =0 with boundary condition
(12) P(r,T,T)=1
I.e the zero coupon bond’s price at maturity equals its principal amount, 1.

The price value of a zero coupon bond in the classical Vasicek model is analytically found,
see Donald R. van Deventer et. al (1997), [1] and is given by the following formula:

(12) P(r,t,T) — P(r, T) _ e—rF(r)—G(r)’
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where F(t,T) = F(r)zé(l—e“) and G(LT)ZG(T)={ﬂ+%—%‘;}[r—F(r)]+%F2(1)

are functions of the remaining time to maturity T —t=r.
The stochastic process proposed by Vasicek, see Donald R. van Deventer et al. (1997), [1]

allows to calculate the expected value and the variance of the short rate at any time in the future
s from the perspective of the current time t. Denoting the short rate at time t by r(t), the

expected value of the short rate at future time s is as follows:
(13) Et [r(S)] =u+ [r(t) _ #] e—a(s—t)

The standard deviation of the potential values of the interest rate r around this mean value

2
o o
14 Standard deviation [r(s)] = ,[—|1—e2*®™
9 t[ ( )] \/Za[ ]

Of course there are some financial problems that are interested also in the constant o / 2«
which is called a long term variance. The meaning of this constant is that the future expected
values for the interest rate r may be regrouped in a long-term period of time with this value of
the variance. Because the interest rate r(s) at future time s is normally distributed there is a

positive probability that r(s) can be negative. This is inconsistent with a no-arbitrage economy
in the special sense that consumers hold an option to hold cash instead of investing at negative

interest rates. The magnitude of this theoretical problem with the Vasicek model depends on the
level of the interest rates and the chosen parameters.

3 Numerical analysis on the classical Vasicek model and some
comparative characteristics

In section 2 we consider the classical Vasicek model and the analytical obtaining of the
zero coupon bond’s price. The equation (10) given in the model with the boundary condition
(11) is a parabolic partial differential equation and we are interested in the market price of risk
A . As we have the condition that the market is a non-arbitrary and the portfolio is riskless then
we decide to take 2 =0. By this decision we eliminate the market price of risk and obtain a
model without a risk factor. The parabolic partial differential equation for this model is given by:

(15) %02 P, +a(u—r)P.+P —rP =0 with boundary condition (11)

This is the first model used in our numerical analysis. We compare it with the classical
Vasicek model for given different values of the constant 4. When A=0 we can also use
another probabilistic numerical method for valuating options, see Sobhani and Milev (2018), [5].
When A is a function of time, see Gzyl et. al (2017), [2] then the interest rate and the volatility
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parameters depend on time and such model reflects more realistic on the random movement of
the asset prices in financial market.

Starting from the parabolic partial differential equations (10) and (15) and using the
software Mathematica 11 we give a numerical solution for the zero coupon bond’s prices for the
two considered models. The experiments are as follows:

3.1 First numerical experiment

This numerical experiment uses the data given in the table below. It is seen that for each
year the market price of risk A is a constant. Also the interest rate r is taking different values
for the period of 1 year. The other parameters are fixed. Based on these data we obtain the zero
coupon bond’s prices without a risk and with a risk factor given in Figure 1 and Figure 2.

a 7 oz A r t T Price
(days) | (year)
0.10 | 0.01 | o0.01 0.010 0 1| 0.1296
Vasicek
model | 0-10 | 0.01 | 0.0 0.015 73 1 0.1843
without 595001 | o0.01 0.020 146 1| 0.2618
a risk
factor | 0.10 | 0.01 | 0.01 0.025 219 1| 0.3719
0.10 | 0.01 | 0.01 0.030 292 1| 0.5288
0.10 | 0.01 | o0.01 0.019 365 1 1.00
I
0.10 | 0.01 | o0.01 0.10 | 0.010 0 1| 0.0050
Vasichek | 0.10 | 0.01 | 0.01 0.10 | 0.015 73 1| 0.0140
model
. 0.10 | 0.01 | o0.01 0.10 | 0.020 146 1| 0.0390
with
arisk 7910 [ 0.01 0.01 0.10 | 0.025 219 1| 0.1073
factor
0.10 | 0.01 | o0.01 0.10 | 0.030 292 1| 0.2945
0.10 | 0.01 | o0.01 0.10 | 0.019 365 1 1.00
Table 1

Specific values determing the bond’s price
in Vasicek models

For fixed values of the parameters «, &, o and A and changing the value of r and t we
obtain the following figures.
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Figure 1 Figure 2
The zero coupon bond’s price The zero coupon bond’s price
for the Vasicek model without a risk factor for the Vasicek model with a risk factor
a=0.10, £=0.01, 0=0.01 a=0.10, ©u=0.01, o =0.01, 4=0.10

At first we cannot find an essential difference between Figure 1 and Figure 2. When we
compare them we obtain the following graphic:

Figure 3
A comparative graphic characteristic showing
the difference in zero coupon bond’s prices between
the model with risk and the model without a risk for

given parameters 4 =0.10, #=0.01, 6=0.0, A =0.10

The graphic and the table below show the difference in the comparative characteristic.
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comparative graph
price
1.0 o
0 8 I
0.6 | I A e price_bond
" | price_bond_risk
04f s
. - .-?
' oA ’
0.2 CR e l
| l
! — : P t . . t-days
50 100 150 200 250 300 350
Figure 4
A Comparative graph with given deviations
for the first experiment
t days 0 73 146 219 292 365=1 year
error 0.1246 0.1703 0.2228 0.390 0.2343 0
Table 2
The deviation of the value of the bond’s price
for different periods of time
Conclusion:

The lines in Figure 4 represent the change in the value of the zero coupon bond’s price
over a period of one year. It can be seen that they are the contour of Figure 3. Based on the two
tables and the graphics we can conclude that with a risk factor the zero coupon bond’s price is
decreasing in time.
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3.2 Second numerical experiment

This numerical experiment uses the data given in the table below. It is seen that for each
year the market price of risk A is increasing. Also the interest rate r is taking different values
in the time period of 5 years. The other parameters are fixed. Based on these data we obtain the
zero coupon bond’s prices without a risk and with a risk factor given in Figure 5 and Figure 6.

194 M o y) r t T Price
(year) | (year)

020 010] 0.05 0.010 0 5| 0.8275

Vasicek
model | 020 | 0.10[ 0.05 0.015 1 5 | 0.8601
without 050 010 | 0.05 0.020 2 5 | 0.8938

a risk
factor | 020 | 0.10 | 0.05 0.025 3 5| 0.9287
020| 0.10] 0.05 0.030 4 5 | 0.9644
020| 010] 0.05 0.019 5 5 1.00
P —
0.20] 010 005] 0.05] 0.010 0 5 [ 0.8087
020| 010 0.05| 0.10] 0.015 1 5| 0.8337

Vasichek
model | 020 | 010 005| 0.5 0.020 2 5 | 0.8693
with T950 1 010| 005| 020] 0.025 3 509125

a risk
factor | 0.10 | 0.10 | 0.05| 0.25| 0.030 4 5 | 0.9588
0.10| 010 0.05| 0.30] 0.019 5 5 1.00

Table 3

Another values determing the bond’s price
in Vasicek models

The Table 3 is constructed based on the increasing values of the parameters «, x, o and

A in comparison with Table 1. Again the values of r and t are changing and the other
parameters are fixed. This leads to the following figures.
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— e
2 el

I3 0

Figure 5 Figure 6
The zero coupon bond’s price The zero coupon bond’s price
for the Vasicek model without a risk factor for the Vasicek model with a risk factor
with given parameters with given parameters
@ =020, #£=0.10, c=0.05 @ =0.20, o=0.05, 2 =0.20, 1 =0.10

At first we cannot find an essential difference between Figure 5 and Figure 6. When we
compare them we obtain the following graphic:

Bir, t, 5}

10 F

Figure 7
A comparative graphic characteristic showing
the difference in zero coupon bond’s prices between
the model with risk and the model without a risk for
given parameters 4 =0.20, #=0.10, ¢ =0.05, 1 = 0.20
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The graphic and the table below show the difference in the comparative characteristic.

comparative graph
price
100/ N
035/ ) y F
L
1 11 ma=== price_bond
8 * 4
| price_bond_risk
050 | l
| |
r ¥
085}
- ]
S e Tt
Figure 8
A Comparative graph with given deviations for the
second experiment
t years 0 1 2 3 4 5
error 0.0188 0.0264 0.0245 0.0162 0.0056 0

Table 4
The deviation of the value of the bond’s price
for different periods of time

Conclusion:

The lines in Figure 8 represent the change in the value of the zero coupon bond’s price
over a period of five years. Obviously they are the contour of Figure 7. Based on the two tables
and the graphics we can conclude once again that with a risk factor the zero coupon bond’s price
is slightly decreasing in time.
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3.3 Third numerical experiment

This numerical experiment uses the data given in the table below. It is seen that for each
year the market price of risk A is increasing. Also the interest rate r is taking different values in
the time period of 10 years. The other parameters are fixed. Based on these data we obtain the
zero coupon bond’s prices without a risk and with a risk factor given in Figure 7 and Figure 8.

o M o A r t T Price
(year) | (year)

030 | 025| 0.10 0.010 0 10 | 0.2357

Vasicek
odel | 030 025 010 0.015 2 10 | 0.3366
without ™—53571025 | 0.10 0.020 4 10 | 0.4742

a risk
factor [ 030 | 025 | 0.10 0.025 6 10 | 0.6516
030 | 025 | 0.10 0.030 8 10 | 0.8517
030 | 025 | 0.10 0.019 10 10| 1.00
e —
030] 025| 010] 005] 0010 0 10 | 0.2103
030 | 025| 010| 0.10] 0015 2 10 | 0.2852

Vasichek
odel | 030 [ 0.25| 010| 015] 0.020 4 10 | 0.4038
with 53017025 | 010| 020 0025 6 10 | 0.5829

a risk
factor [ 030 | 025 | 0.10| 025 0.030 8 10 | 0.8172
030 | 025| 010| 030 0.019 10 10| 100

Table 5

Values determing the bond’s price
in the last experiment Vasicek models
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Bir, t,10)

Figure 7 Figure 8
The zero coupon bond’s price The zero coupon bond’s price
for the Vasicek model without a risk factor for the Vasicek model with a risk factor
with given parameters: with given parameters:
a=0.30, £=0.25 0=0.10 a=0.30, £u=0.25 =010, 2 =0.20

The comparative graphic is:

Figure 9
A comparative graphic characteristic showing
the difference in zero coupon bond’s prices between
the model with risk and the model without a risk for
given parameters  =0.30, x=0.25, 5=0.10, 2 = 0.20

The graphic and the table below show the difference in the comparative characteristic.
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comparative graph
price

1.0} &
0.8 ) ;
] ) t
06} | price_bond
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0.4} , =" ' |

o.z%'

: L f-years
0

Figure 10
A comparative graph with given deviations for the
third experiment

tyears 0 2 4 6 8 10
error 0.0254 0.0514 0.0704 0.0687 0.0345 0
Table 6

The deviation of the value of the bond’s price
for different periods of time for the last experiment

Conclusion:

The lines in Figure 10 represent the change in the value of the zero coupon bond’s price
over a period of ten years. Based on the two tables and the graphics we can conclude once again
that with a risk factor the zero coupon bond’s price is strongly decreasing in time.
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4 Concluding remarks

In this paper we introduced the zero coupon bond’s price in the classical Vasicek model.
We considered the influence of the market price of a risk 1 over the bond’s price and called this
model — Vasicek model with a risk factor. Analogously we eliminate the influence of the market
price of a risk and called the model - Vasicek model without a risk factor. Taking different
values of the risk factor and the other parameters we made a numerical comparative analysis for
the changing of the bond’s prices in selected periods of time. Finally, we gave three numerical
experiments and made the conclusions that the zero coupon bond’s price with risk factor is
decreasing in time.
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MATRIX GAME, EQUILIBRIUM AND COMPUTER REALIZATION
OF WOLFRAM MATHEMATICA

YANITSA M. MANDZHUKOVA, RADOSLAVA S. TERZIEVA, SNEZHANA G. HRISTOVA

ABSTRACT: The Game Theory is a relatively new branch in mathematics and can be used as
an apparatus for modeling and solving real processes and phenomena.

Models of real life situations that are adequately described by games are studied. The models
are solved using the Wolfram Mathematica software package.

KEYWORDS: Game theory, matrix games, equilibrium.

MATPUYHHU UT'PU, PABHOBECHUE U KOMITIOTHbPHA
PEAJIN3ALIAS HA WOLFRAM MATHEMATICA®

SAHUIA M. MAHTKYKOBA, PATTOCJTIABA C. TEP3UEBA, CHEXKAHA I'. XPUCTOBA

ABCTPAKT: Teopus na uecpume e CpAGHUMENIHO HO8 KIOH 8 MAMeMamuKama u ce u3nousséa
Kamo anapam 3a mooenupaue u peuwlasane Ha peouyd peanrHu npoyecu U sAeilenus 8 UKOHOMUKAma,
busHeca, noaumuKama, OUOIOUAMA U np.

B masu cmamus ca npednodxcenu u u3cne08anu HAKOU MOOenU HA PealHu CUMYayuu, ONUCAHU
adexeamno upe3 ucpu. Mooemume ca pewenu ¢ nomowma Ha cogpmyepnus naxem Wolfram
Mathematica.

1 BbBeaenue

Teopust Ha WrpuTe € 5T OT MPHIOXKHAaTa Marematuka. C TOMOINTAa HA METOJUTE OT
TEOpUATA HA WIPHUTE CTPATETHYECKM CE€ W3ydaBaT MaTEeMaTHUYECKH MOJEIH, KaTo Ce B3MMAaT
perieHuss B KOHQJIUKTHA CUTyalud. KOH(IUKTHH ca CHUTyalluuTe, TpPH KOWUTO HMa JIBE
B3aUMOJIEHCTBAIA CH CTPAaHH C IPOTHBOIOJIOKHK MeNd. IIpu TOBa, pe3yiTaTbT OT BCAKO
JICWCTBHE HA eHATa CTPaHa 3aBUCH OT HAUYWHA Ha JACHCTBHE Ha MPOTHUBOIOIOKHATA CTPAHA.

Besika enHa cHTyalsi, NMPH KOSATO BCEKM YYaCTHHK € 3aBUCHM OT JICHCTBHSTA Ha
OCTaHAINTEe YYaCTHHUIH, MOke naa ce moxenupa karo wrpa ([1], [3], [4]). Tosa obycnass
HOMYJIIPHOCTTA M TPHIOXKHMOCTTa HA TEOPHUATa HAa WTPHTE. PeajiHO Tasu TEOpUs MOXKE Ja
MIOMOTHE 332 B3€MAaHETO Ha ONTHMAIHOTO PEIICHHE BHB BCSAKA €IHA JKUTEHCKa cuTyanwus. Ts
MOCTENIEHHO M3JIM3a OT MaTeMaTHKaTa M MKOHOMHKAaTa W HaBIIK3a, KAKTO B TCHUXOJIOTHSATA H
COIMOJIOTHSATA- 34 J]a C€ ONMUTA Jia OOSICHH STHYHOTO IMOBEICHHE, OOMIECTBEHHS W COIUATHUS
u300p, Taka W B TOJUTOJNOTHATA, KBIACTO € TMOJie3HAa MPHU M3CICIBaHEe Ha ECKaJHpario
HalpeXEeHNE W MEXITYHAPOIHN BOCHHU KOH(IIUKTH.

B Hacrosimata CTaTHsl € TMOKa3aH Ha4yWH 3a H3CJIeABaHE Ha MATPUYHU WIPH, KOUTO ca
U3I0JI3BaHE 33 MOJEIM Ha KOHKPETHHM peajHd curyanuu. Hammcanm ca xomose ma \Wolfram
Mathematica u ca HamMepeHH TOMHUHHpAIIH CTPATETHH, PABHOBECHE HA CHOTBETHUTE MOJIEIIH.

" Hacrosiiata pa6oTa € yactuuno (uHaHcupana 1mo npoektr MY 17®MU007 u CIT17OMU005 npu HITJ npu
IInosnuBcku Yuusepcurert ,,I1. Xunennapcku®.
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2 OcHOBHH TCOPETUYHH CBCACHHUSA 34 MATPUIHU UTI'PHA

Enna 6e3xoammnmonna urpa G(M,X,P) ¢ k urpaua ce Hapuda urpa ¢ HyJeBa cyma, ako 3a

BCEKHM M3X0J Ha urpara X = (X1, Xy, ..., X,) € X = X; X X, X ...X X, cyMara OT IUIAIIAHHsATA
k

Ha BCUYKH MIPaYd € HYJIEBA, T.€. € U3IIBJIHCHO Z P;(x) = 0.
j=1

be3koanuimoHHUTE UTpU C JBaMa UTpayd C HyJEBa CyMa C€ HapU4aT aHTarOHUCTUYHMU.
[Ipy aHTaroHMCTUYHUTE WUIPU 3a BCEKM U3XOJ HA UIpara € HU3NBJIHEHO, Y€ IUIAIAHUATA Ha
JIBaMaTa Wrpadyd ca pPaBHU MO aOCOJIOTHA CTOWHOCT, HO C TMPOTHUBOIOJOXKHU 3Harm. ToBa
03HayaBa, Y€ NHTEPECUTE Ha JBaMaTa UI'pPayu ca aHTarOHUCTUYHU, IIPOTUBOIOIOKHHU.

AHTaroHUCTUYHUTE WIPpH Morar ja ObgaT KpailHu win Oe3kpaiinu. Kpaiinure
AQHTAarOHUCTUYHU UTPU C€ HAPUYAT MATPUUHU UTPH.

JomMuHupamum crparteruu

Crparerusita X; € JOMHUHHpalla, akO €JIEMEHTUTE Ha i-Tus pex B marpuuata M ca no-
rOJIEMHU WJIU PABHU OT ChOTBETHUTE €JIEMEHTH BbB BCUUKHU OCTAHAJIU PELIOBE.

Crparerusra y; € IOMUHUPAILA, aKO EIEMEHTHTE Ha j-THsA CTHIO B Marpuuara M ca mo-
MaJIK1 WK PaBHU OT CbOTBETHUTE E€JIEMEHTH BbB BCUUKH OCTAaHAJIM CTHJIOOBE.

CenJioBa TOUYKA M IleHA HA UTPaTa

N3xoapT HAa MaTpu4Ha Wrpa, NpU KOWTO HEWHOTO IUIAIAHE € IMO-MAaJKO WIM PaBHO Ha
BCSIKO IUIAIlaHE B CbOTBETHUS M PE U € IO-TOJISIMO WJIM PABHO HAa BCSKO IUIAIIAHE B CbOTBETHUS
1 cTBJIO ce Hapu4a ceyIoBa TOYKA.

AKO ChIIECTBYBA YUCIIO V, TAKOBA, Y€

® 33 11 uma cTparerus, kosaTo My rapantupa rnedainoa [IOHE V,

® 33 112 uma crparerus, kosto My rapantupa neuanb6a HE IIOBEYE ot V, To V ce Hapuua
LI€HA HA UIpaTa.
AKO enHa MaTpU4YHa Urpa UMa CEAJI0Ba TOYKA, TO HEMHOTO IIJIAlllaHe € [IEeHa Ha Urpara.

3 MopgeanpaHe Ha HAKOM KOHKPETHH PeaJIHM CUTYalluH Ype3 Urpu.

[Ile pasriename nmpuMepH, ¢ KOUTO 1€ HUIIOCTpUpPAME OCHOBHMTE IOHATHUS U METOJIU B
TEOpHUsl Ha UTPUTE.

IIpumep 1. /IBe rosemMu KOMMIOTbPHU (UpPMHU Mpeasarat oInpenesaeH BHUJI JIANTOIL.
MapkeTHHroBO Mpoy4yBaHe IOKa3Ba MedanbaTa Ha JBeTe (UPMH, NpHU pa3IUYHUTE LECHH,
M3MEXITYy KOUTO Te MoraT na uzbepar (Tabmuma 1).

Tab6auna 1.
IMeuan6ara (B MJIH. JIB) Ha ABeTe (PUpPMHU.

A B C

X 5-5 -1,1 | 1,-1

Y [ 10,—-10 | 4,—4 | 3,-2

Z 6,—6 3,-3 | 2,-3
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Ot tabnuna 1 ce BWKIa, 4e UTpadyuTe UMAT KpaeH Opoil crpareruu, karto urpaud 1 (M1)
uMa crtparerun X,Y,Z, a U2 - A,B,C, xakTo U Y€ JBaMara Urpayd ca ¢ AaHTarOHUCTHUYHU
MHTEpecH (BCEKM H3XO0J Ha urparta uma HyjleBa cyma). B To3u ciydail urpara ce Hapuua
MaTpyU4Ha W € HalbJIHO JeQUHHMpaHa caMO C MarpuliaTa OT IUIALAHMATAa Ha I'bPBUS UIpad.
CrnenoBarenHO MOKEM J1a IIPEICTaBUM MaTpuliaTta Ha Iutamanusata (M) 3a 1Bamara urpadu 1o
CJIEIHUS HA4MH:

Ta6auna 2.
Martpuua Ha iiamanusara (M)

A B C
X |5 -1 1
Y | 10 4 3
Z | 6 3 2

TBil KaTO WHTEpPECUTE Ha JBamMaTa Wrpavyd ca aHTAarOHUCTUYHHU/TIPOTHUBOMIOJOXXKHH, TO
nJjaTexkHara matpuia Ha M2 e - M.

Ot Tabnuia 2 ce B, 4€ €JIEMEHTUTE BbB BTOPHS PEJ Ca MO-TOJEMHU OT CbOTBETHHUTE
€JIeMEHTH B ocTaHanuTe penoBe. CiemoBaTeslHO, MOXKEM Jla TBBPAUM, 4Ye cTparerusita Y e
JoMuHupaiia crparerus 3a M1. Jlokato e1eMeHTUTE B HUTO €IMH OT CTHJIOOBETE HE ca IMO-MaJIKH
WIM pPaBHU OT CHOTBETHUTE €JIEMEHTH B OCTaHaauTe CThiIOoBe. ClenoBaTeiaHo, HsIMa
JIOMHHHpaIa ctparerus 3a 12.

5 -1 1
X/5 -1 1 n2:110 4 3
ar:y|10 4 3 6 3 2
Z\6 3 2
A B C

®urypa 1. Hamupane Ha JOMHUHMPALIU CTPATernH.

3a HaMUpaHe Ha CeJI0BaTa TOYKa ¢ Kpbrue oTéensa3BaMe MiN mo pes, ¢ KBaaparde max
o cTe0 (Tabmuma 3).

Tabauya 3.
Hamupane Ha celJI0Ba TOYKA

C

1

3
@

wE@h

~
G\Em::
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Pasrnexxnanara urpa uma cemiona touka (Y, C) u nienara Ha urpara e 3.
Peanmusupame pemennero upe3 Wolfram Mathematica:

@) Uzrorssaue MaTpula Ha I1alaHnuAaTa:
al=5;a2=-1;a3=1;a4=10;a5=4;a6=3;a7=96;a6=3;89=2;
Grid[{{" ", "A", "B", "C"}, {"¥", al, a2, a3}, {"Y", a4, aF, a6}, {"Z", a7, aB, a9}}, Frame -+ All, Background -+ LightGray]
O H?)FOTBSIHC Ha KOA, HaMI/IpaH_[ IIOMI/IHI/IpaH_II/ITe CTpaTeFI/II/I 3a ABaMaTta I/II‘pa‘II/Il
If[al > a4 Gka? >al &had>abké al » a7 &kal>ad &had»> a9, "Crparerns X e JOMMAMDaWa CTDATErMA 53 IBPEHA HIpay.',

Iffad »al kkab>ad khab>adhh ad » a7 Lkab>ad &kab» a9, "Crpaverns Y e goMMHWDANZ CUDATErsd 53 DEPEMA HIPay.",

If[a7>al khali>a? Ghad>al bk al»ad &hal > ad 4had»ab, "Crparerns I e JOMMHHDANA CTDATErMA 33 MEDEHA Mrpad.’, "Hama [OMMHMDANZ CTDATETHA 53 DEPEMA HTpad.']]]
If[al ca? Gkal <a3 hkad <af &k ad < ab kkal <al &kal<ad, "Crpavernd A e JoMMAMDaNA CTDATErHA 33 BIODHA HIpay.',

If[a2<al Gkal <a3 bhab <ad bk ab < a7 kkad <al &kab < a9, "Crpaverns B e JoMMHMDANA CTDATErkd 53 ETODHA HMIPay.”,

If[a3 <al Ghad<a? hhab < ad &k ab <ad khad <a7 &kad < ab, "Crparerna C € JOMMHHpANA CTDATErHs 33 BTODHA ¥rpay.', "HAMa NOMMAMDANA CTDATErHA 53 BTOpMA HMrpad."]]]
o TcheHe Ha Cc€aJI0OBAa TOYKaA:

max = Max[Min[al, a2, a3], Min[a4, a5, a6], Min[a7, a8, a%9]]:

min = Min[Max[al, a4, a7] , Max[a2, a5, a7] , Max[a3, a6, a%9]]:
If[min =-- max, "HMa cegmoea Togdra.", "Hama cengmoBa Toudra. "]
Print["Hemara ma prparTa  paBpa #a ", min, "."]

B u3nbiHEHue Ha TO3M KOJ, MOJy4daBaMe JOMUHUPALIUTE CTPATETHUU 3a BaTa UIPayvu
(ako MMa TakuBa), CeJUI0BA TOYKA U LICHA Ha UIpaTa.

Pesynraru:

Crpa TETHE Y 2 OJOMHHHDANE CTDATEIHMA 34 [TEDEBEHMA HIDAY.

Hara monHMpama cTpaTSIME 34 BTOPHMA MIpady.

42 CceOmoOBaE TOYHA.

[eraTa HA HIpaTa & paBHa Ha 3.

IIpumep 2. Pubapu, xouto paboTaT Ha eI1uH puOOIOBEH Kopad MMaT BB3MOXKHOCT Jia
CIIO’KAT MPEXKUTE 32 puda WIIM B OTKPUTO MOPE MIIH B 3QJIMBA, KAaTO TaKcara UM 3a 3auuBa € 10
7B, a 3a OTKpuTO Mope - 20 1B. B oTKpuTO MOpe MMa IMoBeue W mo-xybaBa puba, HO UMa
BB3MOKHOCT M OT BBJIHEHHS Ha BOJAaTa, KOMTO OMXa YHHIIOXWIA MpPEXHTe MM. JloKaTo B
3aJMBa, TE 1€ CIeuenarT oT yinoBa Ha puba 35 (x100) nB. Ako u3bepar 1a oTUAaT B OTKPUTO
MOpE U MMa BBIIHEHHUE, TO Te e creyens camo 15 (x100) nB, a ako HsIMa BBIHEHUE — /D
(x100) nB.

Koe mscto ga uzbepar pubapute? Kosko 1ie cnedensT npu To3u u3dop?

[IspBOHaYaATHO oOmpeAesMe KOM ca CTpaTermuTe B JajeHara urpa — OTKpUTO,
3akpuro, Brianenne, be3 BbiiHeHue.
Kaxk na monsianMm tadiumara?
Otkpuro (- 20 18.)
C BosiHenne (+ 15 nB.) — 20 + 15=-5
bes BpnHenue (+ 75 nB.) — 20 + 75=5
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3akpuro (- 10 1B.)
C eanenwue (+ 35 nB.) — 10 + 35= 25
be3 Bvanenue (+ 35 nB.) — 10 + 35= 25
Cera u3roTBsiMe MaTpUIlaTa HA MJIAIAHUATA ¥ TIOMBJIBAME TUTAIIAHKSTA B HEsl.

Tabuuna 4
Matpuua Ha nuamanusTa 3a IIpumep 2
Bvanenue bes
6bJ/IHCHUE
Omxkpumo -5 55
3axkpumo 25 25

HSHOJ‘ISBaMe HalluCaHUusA no-rope aJ'IFOpI/IT’LM 3a pemaBaHe Ha TaKbB THUII 3aJa4YU qpe3
Wolfram Mathematica.

al - -5;a?-"53; a3 -25; ad - 35;

Grid[{{" ", "Brigesne", "Bes pramemme"}, {"Orzpmro", al, a2}, {"Saxpmro", al, ad}}, Frame -+ Al1, Background -+ LightGray]

Brnrerne |Bes BnaHeHHE
OTKpHTO -3 55
3axpuTo 25 25

max = Max[Min[al, a2], Min[a3, ad]];
min = Min[Max[al, a3], Max[a2, ad]]:
If[min == max, "HMa cegmoea Touka.", "HaMa cegmoBa Touka."]

Print["CenqnmoBarTa ToYka € paBHa Ha ", min, "."]

Pewrenne:
Hma ceuioBa ToYKa.
IlenaTa Ha urpata e paBHa Ha 25.

H3Box : Mma cenyoBa Touka , koATo € (3akputo, BhiHeHue), a 1ieHaTa Ha Urpata €
25, KoeTo 03HauaBa, ue pubapute TpsOBa Ja OTHAAT B 3aluBa 0e3 3HAUCHUE Jalld UMa WU
HsMa BBJIHEHHE. Te He ca 3aMHTEPECOBAHM Ja Ce OTKIIOHSBAT OT TO3u u30op. [lpu To3m
u30o0p e crieyensat 25(x100) nB.

3akJIroueHue

B Hacrosimara pabora, OnaromapeHue Ha TEOpHS Ha WIPHTE ca MOJCIHPAHU M
M3CJIC/IBAHU JIBE KOPEHHO PA3IMUYHHM PEajHU CHUTYyallMH. PasrienaHu ca MaTpHUYHH HIPH,
KOMTO ca pelIeHu ¢ moMouira Ha Mmaremaruueckus codryep Wolfram Mathematica.

baarogapuocTu

W3cnensanusTa ca 4aCTUYHO U3BBPIICHU 1O poekT MY 17OMMO007 u CI117dMU 005
kbM HITJI mpu ITY ,,I1. Xunenmapcku®.
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ON THE FOUR-POINTS BOUNDS FOR THE EFFECTIVE
CONDUCTIVITY OF MULTI-PHASE DISPERSIONS*

KRASIMIR D. TSVYATKOV

ABSTRACT: Bounds on the effective conductivity derived by using the Hashin-Shtrikman
variational principle are considered for dispersions of homogeneous spheres, which can have different,
random conductivity o,,. Generally, the bounds contain two statistical parameters I, 1(73) and 1, 54) involving
three- and four-points moments of conductivity field o (x), respectively. The structure of this parameters
is investigated for such dispersions. It is turned out that I ((,3) is represented by the well-known geometrical
tree-points parameter (o and another two-points geometrical parameter, but 154) is represented with
two two-points and with one three- and one four-points geometrical parameters. For 2D dispersions the

four-points geometrical parameter is expressed by the parameter (5.

KEYWORDS: effective conductivity, random dispersions, variational bounds

BbPXY UETUPUTOYKOBUTE N'PAHULIA 3A E@EKTUBHATA
MNPOBOANMOCT HA MHOI'O®A3HU JUCIIEPCUUA

Keacavup /1. LIBATKOB

1 VYBox

Pasrnexxaame aucnepcusi OT XOMOT€HHH HENpecHyally ce cepu cheC cilydaiiHa npoBOAHU-
MOCT Op, pasnpeacicHu CJIy‘-IB.ﬁHO B HCOIrpaHUWYCHA MaTpulla C IPpOBOAUMOCT 0,,, 3aCMallla IsAJ10TO
d-MepHO eBKJINI0BO npocTpancTBO R”, d = 2, 3. Bpb3kara Mex a1y IUTbTHOCTTA Ha €IEKTPUIECKUS
tok J () u enexkrpuyeckoro nosie E(x) B cpenara ce naBa ot 3akoHa Ha Om:

(1) J(x) = o(z)E(z),

KBJIETO 0 () € CIIy4aifHOTO MOJIe Ha MPOBOAUMOCTTA Ha cpeaara. [Ipeamnonarame, 4e Ts € CTaTUCTHU-
YEeCKH XOMOTeHHa 1 u30TponHa. Torasa egpexkmuenama npoeooumocm o, Ha cpeara OOMKHOBEHO
ce aeduHUpa Ype3 paBeHCTBOTO

2) (J(@)) = oc (E(x)),

KBJICTO CKOOUTE ( ) O3HAYABAT yCPEIHEHHE 110 aHCaMObJIa OT pean3aliy Ha cpenara. Hamupaneto
Ha 0, € OCHOBHA 3aJlaya B TEOpUsITa HA KOMIO3UTHUTE MaTepuaju U € MOCTaBeHa B TPYJOBE HA
KJIAaCUIIMTE HAa ChbBPEMEHHATA HayKa, BXK. HapuMep Tpakrara Ha Maxkcyen [1].

B 001us ciydaii ehekTHBHATa MPOBOAUMOCT 0, 3aBUCH OT ITBJIHOTO CTAaTHCTUYECKO OMHCA-
HUe Ha cpenara. Ha mpakTuka, obade, pasmonarame camo ¢ WHGopMaIuaTa, JaBaHa OT IbPBUTE
HSIKOJIKO KOpellalimoHHU (YHKIMH 3a cpefara. ETo 3amo eIMHCTBEHOTO, KOETO MOXKE JIa CE Hall-
paBu CTPOro U MOCJIEI0BATEIHO, € OTyYaBaHETO Ha TPAHULIU 3a 0. Pazmexaaiiku Kiacuyeckus
BapHaIMOHEH MPUHIIUTI

A~ A~ A~

(3) WIE()] = 5(0(:}3)E(m) - E(x)) — min

*Partially supported by Scientific Research Grant RD-08-119/2018 of Shumen University.
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BBpPXY IPOOHHU MOJIETa OT BUIA

4) B(x) = (E) + \(E) - / VVG(x — y)o'(y) dy.

KBJIETO A € CKaJapeH napamersp, bepan [2] momydaBa ropHa rpaHuIia 3a . py d = 3, BKIIOYBAIIA
CTaTUCTUYECKUS MapaMeTbp

1
(07%)

3aBUCeI] OT TpUTOUKOBHS MoMeHT MY (z, w) = (0/(0)o’(z)o’(w)) Ha daykryarmsra o' (x) =
o(x) — (o) na nonero o(x); B (4) u (5) G(x) e pyHnaMEHTATHOTO pElICHNE HA YPABHEHUETO Ha
Jamnac, te. G(x) = 1/4n|x| npu d = 3 u G(x) = —In|x|/27 npu d = 2. e orbenexum
CBIO, Y€ TyK U MO-HATATHhK y4YacTBALIUTE TPpaaueHTH Ha (G(x) ce pasmiexaar Kato 0600meHn
¢yukimu. [onerara (4) mpu A = 1/(0) npeacTaBnsBar MbpBUTE JBa WICHA OT MEPTYOAIHOHHOTO
paznarane Ha F(x) 3a cnabo xereporenHa cpena. [Ipy d = 2 rpaHUIMTE OT TO3M THII Ca MOTyYCHH
ot Cunnyuep [3].

3ae/IHO ¢ XeTeporeHHaTa cpejia Aa pasrieaMe XOMOTeHHa HeorpaHHUeHa Cpe/ia ¢ POBO/IH-
MOCT 0 U Jia BbBE/IeM HHIy[[UPaHaTa MOJISPU3aLHs

5) I3 =

//G,ij(z)Gﬂ(w)Mg(z,w) dzdw,

(6) P(x) = (0(x) — 00) E(x)

OTHOCHO Ta3u cpena 3a cpaBaenue. [lonero P(x) ce noqunHsABa Ha BapHAILMOHHUS MPUHIMI Ha
XamuH u Tpukman [4], chIimacHO KOUTO (YyHKIIMOHATBT

~ ~ ~ A~

(7 U[P()] =00 (E)> + 2P(x) - (E) + P(z) - E (z) - P(z) - P(z)/(o(z) — 0v))

€ CTalMOHapeH 3a HCTUHCKOTO mosie P(a) B XeTeporeHHara cpe/ia M Heropara CTal[MOHapHA CTOM-
noct Uy e Uy = o, (E)?. Tlpu toBa Uy € MuanmyM nipu o () < 0y 1 MakcuMyM nipu o (x) > 0.
B(7)(E)* = (E)- (E)n

~/ ]_ =~/

®) Bla)= / VVG(x - y) - Ply)dy,

0o

KBJIETO ﬁ/(y) e QuIyKTyauusTa Ha Ipo6HoTO Nose P (y).
Crnopen (6) ananorst Ha mpoOHuTe monera (4) Ha bepan ca nmonerara

©) P(z) = (o(z) — o0) {A1<E> “alB)- [VVGGE - y)o'(w) dy} ,

KaTo cera BapuallMOHHUAT npuHImn Ha XamuH-1I{TpukmaH no3BossBa 1a BbBEIEM CKaJlapeH Ma-
pamersp u npen (E). Ilpu Ay = 0 nony4yaBame npobuute nonera P(x) = Ao(x) — 0¢)(E),
KOUTO TpU eKcTpeMusupane Ha U OTHOCHO A BOJAT O MOJTy4aBaHE HA TPAHUIM 3a O, KOUTO B
cilydas Ha By(Qa3Ha cpesia chBnaaar ¢ rpanuuuTe Ha Xamus U Ltpukman [4]. 3a N-da3Ha cpena
npu N > 3 Te3u aBTOpHU IOJydyaBaT M0-100pH TPaHUIIU 32 O, PASDICKAANKN \ Karo QyHKLIUSA
Ha IPOBOAUMOCTHUTE 071, . .., 0y Ha KOMIIOHEHTHTE Ha cpeaara. PasniexnaHeTo cera Ha (GyHKIU-
oHana U BbpXy Kjaca oT mpoOHuU nonera (9) npu eJTHOBPEMEHHO BapUpaHe Ha MapaMeTpuTe A\ U
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4
)\2 e J0BCAC N0 HaMUPAaHC HAa T'PaHUIA 34 0., BKIIOUBAIIX OILIC CTATUCTUYCCKHU MMAPaAMCThP I((; ),

3aBUCEL] OT YETBBPTUS MOMEHT
(10) M{(z,v,w) = (0'(0)0"(2)0" (v)o" (w)).

B cniyuast d = 3 Te3u rpaHuim 6sxa U3BEICHU OT aBTOpA B [5, 6] U pa3miex1aHu 3a IUCTIEPCUs OT
cepH C eHa U ChILA, HECTy4aiiHa IPOBOAUMOCT 0y, 10 PEJl ¢12,, KBJIETO ¢, € 00EMHATa KOHLIEHTPa-
1ys Ha c(epuTe B JUCnepcusTa. 3a AUCIEPCHH OT CEPH ChC ClTydyaiiHa IPOBOAUMOCT 0, TapaMeT-
pute 13w CBHABPKAT B CIIOKHA MHTETpaHa popMa KaKTO CTATHCTUKATa HAa paslpe/leieHre
Ha [IEHTpOBeTE Ha c(hepute (TeoMeTpusiTa Ha CpeaTa), Taka U CTaTUCTUKATA Ha pasIipe/iesicHHe Ha
IPOBOANUMOCTTA 0, (MaTepUaIHUTE HapaMeTpU Ha cpenara). Tyk 1ie u3cieaBaMe CTpyKTypaTa Ha
napameTpuTe 15 u ](54), OTACNSANUKH €Ha OT Jpyra reoMeTpUYHaTa U MaTepuaaHaTa CTaTUCTHKA.
3a mapameTbpa L(,3) TOBA BeUe MO CHIIECTBO € HAPaBEHO OT aBTopa B [7, 8], KbJIETO IPAHUIIUTE HA
bepan u xnactepuute rpanunu Ha Topkyaro [9] ce paszmiexaar oz oour yaasp. M3cinenBanero Ha
15 ce cBexna 1o pasmiekJaHeTo Ha JIBa FEOMETPUYHH MMapaMeTbpa, CIUHHUAT OT KOUTO ChAbPKa
JIBY- U TPU-TOYKOBATA, a APYTUAT CaMO JBY-TOUYKOBaTa (PYHKIIMHU Ha pa3lpe/ieieHne Ha IIECHTPOBETE

4
Ha cepurte. KakTo 111e BUJUM 110-10:7Y, ITOJI0KESHUETO C TapaMeTspa I, ) ¢ 3HAYUTEITHO [TO-CIIOKHO.

2  YeTHUpPHUTOYKOBHM I'PAHMLM 32 e(DeKTUBHATA NMPOBOAUMOCT

Pecrpukimsita U (A, \2) Ha GpyHKuHOHaA (7) BBPXY KiIaca OT npoOHu mosneta (9) e kBaapa-
THUYHA OpMa HA \; U g :

(11) U()\l, )\2) = (ao + 2(11)\1 + 2@2)\2 + &11)\% + 2&12)\1)\2 + 0,22)\3) <E>2,
KbACTO 1
ap = 0Oy, a1:<0>—00, 012:—3(0/2)7

0o d (o)

1 o= 30 () -0 an= {0+ (o) - o] + 10}

3
TYyK /. 9 e crarncrnueckusT napaMmeTsp (5), nosABsBal ce B FOpHaTa rpaHula Ha bepan, a

1
(o)

€ HOB CTaTUCTUYECKHU MapaMeThp, KOUTO HAKPaTKO KOMEHTUPAXME M10-TOpe.
Excrpumunsupaiiku Gpynkmsara U (A, Ag), modydaBame

(13) IW = ///Gw(z)G,jk(w)G,ki(z —v)M7] (z,v,w)dzdvdw

(14) extrU()\l,)\g) = 0'6(0'0><E>2,
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KBJIETO

(15) 0(4)(00) — 0y + a1asa13 — aag — aiary
HS =

2
A11Q22 — Q7o

(4)
ChriacHO BapHanMoHHMs NpuHIMN Ha XamuH U lpukMan BenmuunHara oy (o) NPeACTaBiIsIBa

rpaHumIia 3a eeKTUBHATA IPOBOIUMOCT O : JIOJHA TIpH 0 () > 0 U TOpHA IpH o () < 0y.

3a nBydasna cpena rpanunure (15) ca cpmmre, nonyuenu or Pan-Tuen u Munros [9], ko-
UTO M3MOJI3BAT pasjiaraHero B pex Ha dypue Ha npoOHuUTE noiera (9), pasmiexIaiku cpena ¢
NepuoinyHa BbTpEIIHA cTpyKTypa npu d = 3. 3a N-das3na cpena npu N > 3 TeXHUTE TpaHU-
1M ca MO-100pH, Thi KaTo IO CHIIECTBO TE Pa3MIEKAAT A\; U Ay KaTo (GYHKIIMU HA TTPOBOIHMOC-
TUTE 01, ...,0N Ha KOMIIOHEHTUTE Ha cpejaTa, BbBexaiiku o010 2/N Bapupaliy ce napamerb-
pa. [To TO31 HauMH Te MOTyYaBaT IPAHUIM 3a O, Chabpkamu N?(N — 1)%/4 ueTHpPUTOYKOBU U
N(N — 1)?/2 TpuTOYKOBHM r€OMETPHYHHU TapaMeThpa. Makap ¥ Mo-ciaabo OrpaHM4UTENHH, pas3-
IIKIaHUTE TYK TpaHuly (15) ce oTHAacAT 3a MPOM3BOJIHA, HE HETIPEMEHHO JTMCKPETHA CIydailHa
cpena. Kakro rpanunurte Ha ®@an-TueH u MUITOH, Taka U Te3U TpaHULM (Aake TPaHULIUTE HPU
A1 = 1u Ay = 1/(0)) ca rpaHuIM OT Y€TBBPTH Pell B CMUCHI, Ue 32 N-(ha3Ha cpesa Te ChBIaaar
10 pen 004,00,00.004, KbJIETO 00 = 05 — 0, IpH pukcupano ¢, s = 1,..., N. B uactHOCT, 3a
nBydasHa cpena ot rpanunuTe (15) nmomydyaBame

! 1 01 — 02 F 01 — 02 4
16 — +ol||———= ,
(10 Zk ( P ) ( op )
¢ koeunmentn Ry = ¢, Ry = —2¢102/d u

(A7) Ry= (- A Ri= - 5 [Ronldr — &) — E(Vi+26,4)],

3 4
KbaeTo A 1 Y, ca 94ucTo TeOMETPUYHH MapaMeTpHy Ha CpeziaTa, KOUTO Ca CBbP3aHU C 1 w1 ype3
paBeHCTBaTa

(18) (0" 7B — (05 — 01)* A, (o) 7

g [ea

(02 - 01)4}/;1

U Ce u3passiBar uype3 MOMEHTHTE Ha HHAnKaTopHara QyHkuus Z,(x) 3a da3a 2 (paBHa Ha 1, ako @
nexxu BbB ¢aza 2 u Ha 0, ako & J1exu BbB (aza 1) upe3 uHTErpaInTe

(19) / / 1 (2)G () (T, (0) T (2) T (w)) ddw,

o vi-/ / / G5 (2) G0 (W) Gra(2 = V)(T2(0)Ta(2)Ta(v) T (w)) dzdvduw;

B (16) u (17) ¢1 u ¢ = 1 — ¢; ca 0OeMHUTE KOHIICHTPAIIUN HA JBETE (a3u C MPOBOAMMOCTHU
CBHOTBETHO 01 U O3.

3a nBydasHa cpefa TpaHUIIMTE OT YeTBBPTHU pel ca u3BeaeHu or MutoH [ 10, 11] upe3 uzmon-
3BaHE HAa aHAJTUTHYEH METOJ] IPU YCIIOBUE, Ye ca u3BecTHU R3 u R,. KoeguuueHtsT 3 € u3BecTeH
OT TPUTOUYKOBUTE rpaHUIM Ha bepaH:

e Ry = 5 6162162 + (d — 1),
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KbJETO (1 U (5 ca 100pe U3yuyeHU TPUTOYKOBU F€OMETPUYHU MapaMeTpH, 3a KOUTo (; = 1 — (o u
0 < (3 < 1, k. Hanpumep [12]. Paszmiexnaiiku o, kato QyHKIUS HA 07 U 09 U [1030BaBaiiku ce
Ha CBOMCTBOTO 0.(071,09) 0.(02,01) = 0109, KOETO € B cuia camo npu d = 2, Murown [10, 11]
MOKa3Ba, ue

(22) Ry =3¢105 (1+ ¢a) — 2R5(1 + 2¢)

Y 110 TO3W HAYWH MOJTyYaBa B siBHA (JOpMa TPaHUIINA OT YETBBPTHU PEIl 32 0. B IBYMEPHUS CIydYaii,
n3pa3sBally ce caMo upes (; U (2. [To3oBaBaiiku ce Ha anpokcumanusTa Ha [lane 3a pena Ha bpays,
Topkyato [13] u3Bexkna B Apyra popma chIuTe TE3U IPaHMIIM 32 ABy(a3Ha cpena.

Bennara ce Bmxna, ye oT uzpasure 3a 3 B (17) u (21) Mmoxkem Ja u3pa3uM reoMeTpUYHUS
napameTbp A upes (o:

(23) A= é¢1¢2 [(d—1)(C2 — ¢2) + 1 — P2 .

Nmaiiku npeasua uzpasure 3a B3 u Ry B (17), c momolra Ha paBeHCTBOTO (22) MOXKEM J1a U3pa3umM
CBILI0 YETUPUTOUKOBHUS IApaMeThp Y, upe3 (o pu d = 2:

(4 Vi = 10102 (61 — 02)(4n — 3G) — 91].

O4eBUIHO MPAKTUYECKOTO NPUIIOKEHHNE Ha rpaHuIuTe (15) 3a KOHKpeTHa cilydaiiHa CTpyK-

3 4
Typa 3aBHCH OT Bb3MO)KHOCTTA 32 IPECMATAaHEe Ha CTATUCTUYECKUTE TapaMeTpH 1w, Jlokaro

3
3a MapamMeTbpa ](S- ) HMa CBIICCTBCH MIPOrpeC Npru NpEeCMATAHECTO MY 3a JUCIICPCHUU OT HCIIpECHU4Ya-

M ce cdepu ¢ HecaydaitHa mpoBoAUMOCT (BX. Hampumep [12]), 3a mapameTspa s

3a HErOBOTO MPECMATAHE 3a TAKUBA JUCHEpCUu Ipu d = 3.

HsiMa OIIMTH

3 CrarucTH4ecKo ONUCAHME HA JUCIIEPCUATA

Ha Bceka cepa ¢ HEHTBD &; 1a CbIIOCTABUM HEroBara IpoBOJUMOCT 0. Taka rnoaydaBame
cucremara {x;, o, } OT MapKUPaHHU CITy4ailHH TOYKH & ;, KOSITO MOXKE J1a Ce pa3rIexn/1a KaTo CUCTeMa
OT TOYKH, CIy4ailHO pasnpenenenu B obnactta R? x Q, kbaero () = [0, +00) € UHTEPBATBT Ha
U3MEHEHHE Ha NPOBOIUMOCTHTE 0. Jla nerHupaMe CiIy4aiiHOTO MOJIE Ha IUIBTHOCTTA

(25) Yz, o) = Z 5(x — x,)d(0 — 0;),

HOPOJICHO OT cuctemara {x;, o, }. Tasu dyHkms ce nedunupa upes 6-pyHkuuaTa Ha Jupax u e
BbBeJieHa 0T CTpatoHoBHY [ 14] 3a HeMapKkupaHa cucTeMa OT TOUKH {x; }, CilTy4aiiHO pasnpenesieHn
BBbPXY IpaBa. HeliHoTO 00001IeHNe 32 MapKUpaHH CiIydailHi Touku {a; } ¢ Mapkep paauyca a; Ha
cepara ¢ eHTBp & ; IPU AUCTIEPCUH OT chepU ChC CIIydaliHU PaJUyCH Ce€ BbBEkKIA OT XPUCTOB
[15]. 3a qucniepcuu OT cepH chC caydaiHu MPOBOIUMOCTH Ta3H (PyHKIMA € BbBEAECHA OT aBTOpa
B [5, 16]. C nomorura Ha dyHKIusTa ¢ (2, o) CIy4ailHOTO MOJIe Ha MPOBOAUMOCTTA 0 (X&) MOXE Aa
ce MpeJCTaBu BbB BHUJIA

(26) =0, +0(x),
(27) // o —om)h(x —y)(y,o)dydo,
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KbIeTo h(x) e xapakTepucTHiHa (yHKIMSA Ha cdepa C USHTHP B KOOPAUHATHOTO HAYAIO.
Crnydaiinara QyHKIUS Ha TUIBTHOCTTA (Y, ) HAITBIHO OMpeaels aucrepcusTa. HeiiHu-
T€ MOMEHTH MOTaT Jia Ce M3pPa3aT 4Ype3 ChbBMECTHUTE MHOTOTOYKOBH BEPOSTHOCTHHU ILUIBTHOCTH

F.(y1,.--,Y,;01,...,0,) Ha pa3Ipe/ieclicHHE Ha LICHTPOBETE I ; Ha CEpHUTE U TEXHUTE IPOBOAU-
Moctu o, n = 1,2, .. .. Ilo-nomy me H1 Ob1aT HEOOXOAUMH U3PA3HTE 3a IBPBUTE YETHPH MOMEHTA,
KOWTO c€ J1aBatr oT (hOpMyJIUTe

¥y, 0)) = Fi(y; 0),

(W(Yy,01), ¥(Ya, 02)) = F1(yy; 01)5(311,2)5(01,2) + Fy(yy, Y95 01,02),

(28) (V(Y1,01), ¥ (Ys, 02, (Y3, 03)) = Fi(y1501)0(Y12)0(01,2)6(y1,3)0(01,3)
+3 {5(3/1,2)5(01,2)F2(y2> Y3, 02, 03)}5 + F3(y1, Yy, Y3 01,02, 03),

<w<y17 01)7 w<y27 02, (y37 03) w(y4> O'4)>
= F1(Y1;01)0(Y1,2)0(01,2)0(y1 3)9(01,3)0(y1,4)0(01,4)
+4{5 Y12)0(01,2)6(Y13)0 (0173)F2(y17y4;01704)}5
+3 {(5 y1,2 (Ul 2>5<y ) (03,4)F2(y17y3;01703)}5

+6 {6(y1,2)6<01,2>F3<y17 Ys3,Yy501,03, 04)}8 + F4(y17 Y2,Y3,Yy501,02,03, 04)7
KbzeTo m { }, 03Ha4aBa CHMETPHU3allis OTHOCHO BCUUKHTE 11 PA3INYHI KOMOUHAIIMY OT UHACKCH
B CKOOUTE, Y,;, =Y, — Y, uo,j =0; — 0 BK. 14,15, 16].
[Ipuemame, de B qucnepcusiTa HMa MPOCTPAHCTBEHU y4aCThIM, KOUTO J1a UMaT U30MpaTe-

HOCT KbM C(bepI/I C pa3jiIn4HUu IMPOBOAUMOCTH. Tosa O3Ha4YaBa, 4€ CTaTUCTUKATa Ha pa3lpCACIICHHUC
Ha IPOBOAMMOCTHUTEC 0 ; Ha Cq)epI/ITe € HC3aBHCHMa OT Ta3H Ha IOJIOXKCHHUATA UM &L ;, T.C.

(29) Fn(y17 cee 7yn7 O1y--- 7O-n) = fn(yb cee Jyn)PTL(O-l? t 70”)7

KbIeTO f,,(Yy,---,Y, ) Ca CbBMECTHUTE MHOTOTOYKOBH BEPOSTHOCTHH ILTHTHOCTH Ha pa3Ipe/ierie-
HHE Ha [IEHTpOBeTe ; Ha cdepure, a P, (01, ..., 0,) ca CbBMECTHUTE BEPOSITHOCTHH ILTBTHOCTH
Ha PasNpeeeHue Ha TEXHUTE IPOBOAUMOCTH 04, n = 1,2, .. .. Ille npuemeM chl110, Y€ TE€3H IPO-
BOJMMOCTH Ca CTAaTUCTUYECKU HE3aBUCUMU, T.C.

(30) P.(o1,...,04) = P(0y) ... P(oy),

KbJIeT0 P(0) e BepOsSTHOCTHATA IUITBTHOCT Ha MPOBOAMMOCTTa 0 Ha cdepa oT aucnepcusita. [le
0TOEIeKHM OIIIE, Y€ OT MPEAIOTI0KEeHaTa CTATUCTUIECKA XOMOT€HHOCT Ha AUCIIEPCHTA CIIeBA, U

[y =n, fryy, Y- YL) = nFgu(Ys—Yq, - - ., Y — Y1 ), KBIETO 1 € CPETHUAT OPOIA IEHTPOBE
Ha cepu B eIMHUIA 00eM U Gi (Y, o, - - -, Yy ;) Ca k-TOUKOBUTE DYHKIMH HA pasmpesieienue, k =

2,3,....
4 Crarucruueckure mapaMeTpu 3a Jucrnepcusara
Nmaiiku npeasun (26), na u3pasuM 4eTBbpTHs MomeHT MY (z, v, w) ot (10) ¢ MoMeHTHTE
Ha moseTo o (x). Taka monmy4yaBame
G M](z,v,w) = (3(0)7(2)5(v)o(w))

—(0) [(0(0)a(2)a(v)) + (7(0)a(z)a(w)) + ((0)a(v)o(w)) + (7(2)0 (v)a(w))]
+(0)*[(5(0)5(2))

01,2

I\



Four-points bounds for the effective conductivity

kbaeto (o) = ((o,) — 0m)p,. Il030BaBaliky ce cera Ha uHTerpaiHara Gopma (27) Ha HOJETO
o (x), u3passiBaMe HETOBUTE MOMEHTH Ype3 MOMEHTHUTE Ha MoJeTo ¢ (y, o) U ciell TOBa, U303~
Baiiku popmynute (28) 3a Te3u MOMeHTH Tipu npeanonoxkeHusaTa (29) u (30), 3a crarucTudecKus
rapameTsp 15S [0JIy4aBame

g

<0_/4>I(4) — <0_p> _ O_m)4 |:X£4) _ Xé?)) + X2(2) _ 3X1(1)] ¢;43

(

+ (o) = ow) {0y — o)) [ X4" = X§ + X ] 6
(32) + (o) = om0y — o)) [ X5V = x| 2

+ {0y = o)) X3V65 + (0 = 0)") X1V,
KbJ1eTO X. ,(lm) € U3pa3bT, ChIBPIKAII B HHTErpaiHa Gpopma n-rtara KopeaannonHa GyHKIAA §p (Yy,s - - -, Yy, )s
KOJTO ce MmosTy4yaBa Ipy 3aMeCTBaHe Ha MoyeTo o () B m-tute My MoMeHTH B (31),m,n = 1,... 4.

(4 o o
C'BHlI/IﬂT CMHCDHJI MMa 1 O3HAYCHUECTO HA U3pasa X2( ) W3non3Baiiku cBoiicTBaTa Ha (l)yHKHI/ISITa Ha
Tpuitn G () u motoHoBus notenmuan o(x) = [h(xz — y)G(y)dy, 3a uspasure X\™ necuo na-

MHUpame

1

1 d*>+2d+3 2(d+1)
a2’ B

XPo_— 170 x® o

4
(33) X =x1Y = o .

4
3a u3cienpaneTo Ha rpanunure (15) e yno6Ho aa nogpenum (o) 1, “ 1o crenenure Ha ((op) —0om)
¥ MOMEHTHTE Ha ClIydaiiHaTa IPOBOAUMOCT 0, Ha cepute. Taka noxyyaBaMe IpeICTaBIHETO

(™) I = ({op) = om)* Vi + ({0) = o) *(07) Y3 + ((03) = om)(0})) Y2

(34) PP Ts — (o),

p

KBJIETO
vi= (X179 = X+ X - 3x(V) o + (x50 - x4 xP) o

n <X2(4) +)~(§4) —X1(3)> ¢§+X1(4)¢p,
65 ¥o= (3 -xa+ xP) o+ [3(0 - x7) 12 X506 1 6 X100,

Yo = (X80 - xP) g2+ ax{Vs,, Vo= X2

Or (34) BenHara 3abens3BaMe, 4e 3a QUCHEPCHs € HECIydailHa MPOBOAUMOCT 0, Ha CepHuTe €

4
B CHJIa PaBEHCTBOTO <cr’4>L§ ) = ({(0p) — om)? Y4, KOETO CpaBHEHO ¢ BTOPOTO paBeHCTBO B (18)
IpU 0, = 09 U 0,, = 01 1OKa3Ba, Y€ TYK Y € CHIIUAT YCTHPUTOUKOB [EOMETPHYCH TTapaMeThp,

4
npeacraseH B (20). Taka ycTaHOBUXMeE, Y€ MPECMITAHETO HA MMapaMeThpa L(, ) ce CBEXIa 0 IIpec-
MSATAHETO Ha YETUPU I'€OMETPUYHHU MApaMEThpa: YETUPUTOUKOBUA Y, TPUTOUKOBUA Y3 U ABara

IBYTOUYKOBHU Y5 U Ys. Criopen (24) B IByMEpHUSAT cilyyail Ha AUCIIEPCHSI OT LIMJIMHAPUYHM BIIaKHA
napamMeTbpbT Y, C€ U3pa3sBa upe3 TPUTOUKOBUS mapaMeTwp (o. Llle oTbenexum camo, ye gaxe u

TOraBa OCTABAllIUTC IMapaMCTPU }/2, }/2 u 3/3 CC M3pasAaBar B I10-CJIOKHA MHTCI'paJIHa (bopMa OT Cb-

3
OTBCTHUTC UM I'COMCTPUYHHU ITAPAMETPH 34 I1apaMEThbpa -[c(r ) ETo 3amo ce nanara OOMUCIISIHETO HA
YUCJICHA IIponcaypa 3a TAXHOTO IMIPECMATAHC.
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ITERATIVE METHODS FOR FINDING THE STABILIZING
SOLUTION IN LQ THREE-PLAYER GAMES FOR POSITIVE
SYSTEMS

NELI L. NEDELCHEVA-BAEVA

ABSTRACT: We consider linear quadratic differential games for positive linear systems with
an open loop information structure. We improved the existing methods for finding the Nash
equilibrium, such as the Newton method and the Sylvester methods to obtain the stabilizing solution of
Riccati equation to a three-player game. The sufficient conditions for convergence are derived. The
proposed algorithms are illustrated on some numerical examples.

KEYWORDS: nonsymmetric algebraic Riccati equations, iteration methods, open loop Nash
equilibrium, positive systems, generalized Riccati equation, stabilizing nonnegative solution

UTEPAITMOHHU METO/JU 3A TbPCEHE HA CTABWIN3UPALIIO
PEHIEHUE B JIMHENHOKBA/IPATUYHU UT'PU C TPUMA UTPAYN
3A HOJIOKUTEJHU CUCTEMH

HE/M JI. HEAEJTYEBA-BAEBA

ABCTPAKT: Pa3zenescoame JIUHENUHOKBAOPAMUYHU USPU 34 NOJONCUMENHU CUCEMU C
omeopena ungopmayuonna cmpykmypa. Hue nooobpsieame cvujecmeysawume mMemoou 34 mopceHe
Ha pasnosecue Ha Haw, kamo memooume na Hiomon u na Cuneecmvp 3a HaMmupawe Ha
cmadunuzupawo peuteHue Ha ypaeHenuemo Ha Puxamu 3a uepa ¢ mpuma uepauu. J{oxazanu ca
docmamvyHu  ycrogus 3a  cxooumocm Ha  memooume. IIpednooicenume  ancopummu - ca
UTIOCMPUPUPAHU C HAKOU USHUCTUMEHU NPUMEDU.

1 BbBeaenue

Pasrnexxnmame nuHEHHOKBaJpaTHYHA HWrpa ¢ OTBOpeHa WHGOpPMAIMOHHA CTPYKTypa 3a
MOJIOKUTETHH CHCTEMHU KaTO CTPATeTHUTE HAa WIPAYyUTe Ce MPEICTAaBAT 4pe3 CTaOMIM3UPAIo
pelIeHre Ha CBHP3aHO HECHMETPHYHO ypaBHeHHe Ha Pukatu. KoHnenmwmsra 3a paBHOBecue Ha
Ham B urpurte, oTunrtaiy pa3inuyHd MHQOPMAIIMOHHU CTPYKTYpH € BbBeleHa oT W. van den
Broek B [4, 5].

[TpunokeHusATa Ha MOJOXKUTEIHUTE CHCTEMHU CE€ CpEIIaT €CTECTBEHO B €KOJIOTHYHUTE U
WKOHOMHYECKUTE CHCTEMH, MHOTO OWOJIOTHYHHU MOJCIH U JIp.

CucreMu oT BUIa

N
(1) X=Ax+Y Bu;, j=123, x(0)=x,
j=1
CC Hapuyar IOJIOKHUTCIHHU, aKO 3a BCHYKHM HCOTPHULATCIHHW Ha4YaJIHU CbCTOSAHUA X0 151

HEOTpHUATeNHH (YHKIMM Ha YOpaBleHHe U;, TO BEKTOPHT Ha chcTosHMeTo X(I) e

HCOTpUIATCIICH BbB BCCKH €/ITUH MOMCHT. 3a YIIPABJICHHUEC Ha IMOJOXKHUTCIHU CUCTEMU OT T'OPHUA
BUI € HCO6XOI[I/IMO Ja C€ Pl MAaTPUIHOTO PUKATHCBO YPABHCHUC OT BU/JIA:
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AT0 0 0 )X (X, Q) (X X,
) —[ 0 AT 0 | X, || X, |A=|Q, [+] X, (S, S, S} X,|=0,
0 0 A" \X,) (X, Q) X, X,

kpjeTo (—A) e nxn Z-matpuua, S; = BjRj_lejT S; = SjT) € HEMOJIOXKUTEJIHA MaTpula 3a j =
1,2,3, Q; — cumeTpuvHa KBaJpaTHA HEOTPUIIATEIHA MATPHULIA C PA3MEPHOCT N, R;; — CAMETpUYHA
KBaJIpaTHA OTPULIATEIIHO ONPEJIEIECHA MATPHIA OT ChOTBETHA Pa3MEPHOCT, Bj — HeoTpULaTeIHa
MaTpuIla ¢ pasMEpHOCT M Xm;, 33 j = 1,2,3, a X;, X, u X3 ca HeusBectHu matpuuu. Hue me
M3M0JI3BaMe MaTPUIU OT Pa3IuyHU PEJIOBE.

e u3nos3Bame caeIHUTE TBHPIACHUS:

Teopema 1. (Teopema 1 B [1]) 3a Z -marpumata A ca EKBHBAJICHTHH CJCIHUTE
TBBP/ICHUSA:

(i) A e M -marpurna.

(ii)) A*>0.

(iii) Av >0 3a Bceku BekTop V>0.

(iv) Becuuku coOCTBEHH CTOMHOCTH HAa MaTpHIlaTa A MMAT MOJIOKUTEIHH PEaHH YacTH,
T.€. MaTpuIaTa — A € ycToiuuBa MaTpHIa.

Jlema 1. Heka —A € R™™ e neocobena M-marpuna, f € OTPUIATEIHO PEANHO YUCIIO
(=8 >0)uC = —pI, — A, roraBa C e HeocobeHa M-matpuna. (Bmwx Jlema 2.4 [3]).

HNepunnmumsa 1. Tpoiikata (u;,u;,uz) ce Hapuua paBHOBecHa Hamr crpaterus 3a
nonoxkurendHara cucrema (1), axo  Jy(ui,uj,ui) = J;(ug,usuz),  (uiuiuz) >
Jo(ui, uy,uz ) u Js(ui, us,uz ) = J3(uj, uz, uz ) 3a BCHUYKH HEOTPHULIATEIHA HAYATHU ChCTOSHUS
Xo ¥ BCUYKH JIOMyCTUMHU CTPATETHH Uj, | = 1,2,3.

2  Meron Ha HI0TOH ¢ mapameTpH 3a TpMMa UTPayu

W3non3Bame urepannonna ¢popmyina (8) ot [2], 3anmucana mo ciieHAsS HAuYWH:
—KUD(A-SKD) - (D —KDS)KWD = @ + KOSK®,i =0,1,2 ...,

AT 0 0 Q1 Xy
kpaeto D=0 AT 0 ), Q={Q2), S=(5 S2 S3), K=|X;| u na 6aza HoBure

0 0 AT Q3 X3
uzen ot [3] u3Bexaame nogoOpeHa uTepaonHa popmysa
@) KUY, +A-SKY)+ (alsp, + D — KDS)KWD = —Q — KOSK® + (a + B)KD,
i =0,1,2..,kpaero a u [ ca OTpULATEITHU peaHu yKcia. BeBexname pa3xoaeH GyHKIHOHAT
(4) Ji(ug, up,uz) = fooo(xTQix + X5 u Rju)dt,zai =1+3,
KONTO ce MUHMMHU3HPA, a BXOJHATA (DYHKIHS U; € CTPAaTeTHusATa Ha [-TUS Urpad.
Marpunure X, X, u X3 nepunupar papHoBecHa Ham crparerus (uj, u;, u3) 1o CieaHus
HaumH u; = —R;;*B X;x* 3ai = 1,2,3 xato x* e penrenue Ha cucremara (1).
BoBexname marpuuna pynkiust P(X) = —DX — XA — Q + XSX.
Jloka3Bame, Y€ METOABT € CXOJISII ChC CIEAHATa TeopeMa:
Teopema 2. Heka B monoxwurennara cuctema (1) marpumata —A € M-matpuna. 3a
Mmatpuiure Q u S BbB (yHKIMOHAIUTE Ha pazxomaute (4) ce mpeamnonara, e Q =0 u S < 0.
Ky
Ipeanonarame oime, ye chilecTByBa TakoBa X = | K, | =0, ue P(X) > 0, a penunara Ha
K;
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Hroton (K (i))ieN' K©® =0, ¢ MOHOTOHHO HaMaisBalla U KIOHH KBbM pemienuero K = 0.

Pemenuero K € Hail-MankoTO pelIEHUE OT MHOKECTBOTO HA BCUYKU HEOTPULIATEIHU PELICHHUS.
Jokazatescto: P(X) >0 = —DX—XA—Q+XSX>0 = XSX>XA+DX+Q.
Hauammata marpunma e K@ =0, xaro mepeusar emementr K ce mpecmsara or

ypaBHeHueTo Ha CuiBeCcTbp —K D (BL, + A) — (alz, + D)K@*D =, koero moxe ma ce
3aluIlIe KaTo JUHEHHa CUCTeMa YpaBHEHUS BbB BHUJIA

[(=BI, — AT®I3, + I,®(—al;, — D)]JvecK™® = vecQ, kpuero vec: R*¥ — RUXL,
Osnauaame L = (—pI, — A)T®I;, + I,®(—al3, — D) u 3anucBaMe ypaBHEHHETO
L©® vecK® = vecQ.
Toit kato —A e M-marpuna ((—A)™ > 0), To or Jema 1 cuensa, ue -fBI, — A e M-

Matpuia. Marpunara (— D)_1 => 0, cerinacHo Teopema 1. cnenBa, ye —D e M-marpuna. Twii
karo a < 0, ceriacHo Jlema 1 cienBa, ue —als,, — D e M-marpuma. CienoBaTeaHo L cpmo e
M-Mmatpuiia, KOETO € EKBUBAJICHTHO Ha (L(O))_1 = 0, u mpaBUM u3BOAA, Ue K ™ > 0.

Heka LO:=[(=fl, — A+ SK®) ®Ly, + 1,® (~aly, — D+ KVS)|, i=012..,
KBJCTO ¢¢ U [ ca OTPULIATCIIHUA PEaJIHU YHCIIa.

[Ipu Taka HampaBeHUTE MPEIIOJIOKEHHUS C METO/Ja Ha MaTeMaTH4ecKara MHAYKIUS IIe
IOKa)KEM, Y€ ca M3IBJIHEHH CIEIHUTE cBoicTBa: 1. KO <K@ED 2 KO <X u3 LOe M-
Marpuua. e nokaxem te3u cBorcTea npu i =0

Caoiicto 1. K@ =0 u Iokazaxme, ue K ® > 0, cnegoBarenHo 0 = K 0 < kM),

Caoiicteo 2. K = 0, a mo nonyckane X > 0, cnenosarenso 0 = K@ < X.

CaoiictBo 3. ITo-rope nokazaxme, ge L(®) ¢ M-marpua.

Honyckame, ye coiictBaTta 1 + 3 ca u3nwianenu 3a i > 0.1le nokaxem, ye ca U3MIbIHEHU
3a [+ 1. 3a ma mokaxkeM cBOWCTBO 2. 3a i + 1 me u3non3Bame (3) u P(i() > 0. Pasrnexname
MaTpuIiaTa
(X —KED)(BL, + A—SKD) + (als, + D — KDS) (X — K+D)
<XSX+ (a+B)(X—KD)—XSK® — kOsX + KOK®
=(X-KD)S(X-KD)+ (e +BX-KD) <0,

o monyckane X —K® >0, aS<0wu a + f < 0. Trit kato L) e M-marpuna 3axmouapame,
qe X — KD > 0, ciiemosarenno KD < X,
[Ile moxaxem cBoiictBO 3. 3a i+ 1 karo wusnoassame (3), P(i() >0 W CIeTHOTO
PaBEHCTBO:
—K@D(BI1, + A — SKUD) — (alz, + D — KHDS)KE+D
(5) — (K(i+1) _ K(l))S(K(l+1) _ K(l)) + Q _ ((X + ,B)K(l) + K(i+1)SK(i+1)
Pasrnexxname matpuniata
(X - KED)(BL, + A— SKED) + (als, + D — KEHDS) (X — KHD),
usnon3ame (5) u moydaBame
= BX + XA —XSK@D 4 oX + DX — KH+VsX
+(K(i+1) _ K(l))s(K(l+1) _ K(l)) + Q _ ((X + ,B)K(l) + K(i+1)SK(i+1)
< XSX + (a + B)X — XSK(*D _ gli+Dgx
+(K(i+1) _ K(l))s(K(l+1) _ K(l)) _ ((Z + ﬁ)K(l) + K(i+1)SK(i+1)
= (KD — KO)S(KHD — gO) + (X — KEDS(X - KHD) + (@ + B)(X - KD) <0,
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ot kato X — KV > 0 or cBoiicto 2. 1 1m0 momyckane @ + f < 0 u K@ < KD, TIpasum
m3Boza, ye LU+1D) vec(K (i+1) _ f() < 0 u LU*Y ¢ Z-marpuia, a clieioBaTenHo U M-MaTpuIa.
Cera 1ie moxkaxkem cBOMCTBO 1. 3a i + 1. Pasriexxname maTpunara
(KD — KDY (B, + A — SKED) + (aly, + D — KEDS) (K2 — KD ysnonssame
(5) 1 monyuaBame
= (K(i+1) - K(l’))g([{(iﬂ) - K(i)) + (a + B)(K(i“) —_ K(i)) <0,
ThU KaTo MO JONYyCKaHE K@D _g® > 0,aS<0wu a+p <0. CrenoBarento K+2)
K@D >0, 1e K2 > KU+,
Penmuara Ha HIOTOH € MOHOTOHHO pacTslla U OrpaHMYeHa OTrope OT X, CJIe0BATEIHO
¥Ma TPaHMIA U 5 o3HadaBame ¢ K, T.e. im K® = K > 0.

{—>00

3  Meroa Ha CuaBectsbp |l ¢ mapamerpu 3a TpuMa urpaum

W3non3BaMe crnenHata HTEepaioHHa GopMyIia:

—(AT =X 5 XD = XD (A- 2L, 5X0) = Qe + X8 XD sa k = 1,23

Y M3BEXK/IaMe MOJJOOPCHN UTEPALHOHHU (POPMYJIIH
6) —(al + AT — xV §) x{*D — x (D) (31 +A- szlstj(”) = Q + X5 XV — (a + px L,
k=1,23.
3a n3yuaBaHe Ha CBOMCTBaTa Ha MeTo/a (6) BbBEXKIaMe CICTHUTE MAaTPUIHU (PYHKIINU:

Pr(Xy, X2, X3) = —(al + AT = X Si) Xie — Xi(BI + A = 33, 5;X;)
_Qk_Xk Ska+ (a‘i‘ﬁ)Xk, k= 1,2,3.

Upe3 anreOpuyHn mpeoOpa3yBaHMs C€ TIOKa3Ba, 4Ye 3a MaTpuyHHTe (QYHKIUU
P (X1,X2,X3), k = 1,2,3 e BAPHO CIIEAHOTO MPEJICTaBSIHE
() P (Y1, Y3, Y3, X1, X, X3) = —(al + AT =Yy i) X — (Vi — Xp) Sic Xic - Qi
—Xp S Ve — X (BI + A — 23":151'1/1') = 2k Xk S (Y, —X;) + (a+ B)Xx,
k = 1,2,3, karo Y3, Y;, Y3 ca cCUMETpUYIHHM MAaTPHUIM OT ChOTBETHATA Pa3MEPHOCT.

CxomMOCTTa Ha MeTo/Ia IOKa3BaMe ChC ClieHaTa TeopeMa:

Teopema 3. Ilpeanonarame chbinecTByBaHeTo Ha jBe MaTpuiu X = diag(X,, X, X3) u

X© = diag(x{”, X", X”), s xomro 0<X@ <X, P(x”x7x7)<0 u

(7)

Pk()?l,)?z,)?g) >0, k =1,2,3. Hauannara marpuina X© u3bupame, Taka 4e (—(0(1 + AT —

X,EO)Sk)) 3a k=123 u (—(,BI + AT — ?ZlXj(O)Sj» ca M-marpuru, kpmero a u f§ ca
OTPHUIATEIIHU PEaTHH 4YKcia, a | € eMHUYHA MaTpuIila OT pex n. ToraBa MaTpUYHHUTE PEAUIH
{X (l),X 2(1), X él)}{’io, )I'e(l)I/IHI/IpaHI/I upe3 (6), mpuTeKaBaT CICIHUTE CBOMCTBA!

(i) XD > x® i=0,1,2,...;

(i) XY <X 3a i=0,1,2,...;

(iii)(— (al + AT —X,E”DSR)), <—(31 + AT — ?lej(Hl)Sj)), k =1,2,3, ca M-marpunu
3a 1=0,1,2,...;

(iv) Marpuuynute pemurm { X (l),Xz(l),Xgl)}f":o ca CXOIAIM KBbM HEOTPHUIATEITHO

pemenue X = (X;,X,,X;) Ha ypasHenueto (2), 3a koeto X < X .
Hoxka3zareacro. Ot

P67 X7) = —(al + 4T = X7, )x(”
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—X{O(p1+ 4= 5,% = 5% = 5,X7) = @ = xV5, % + (a + X < 0
clenBa, ue P; (Xfo),Xz(O),Xéo)) = Fl(o) < 0. Hauannara matpuna X 0) = diag (Xl(o),Xz(O),XEEO))

n30MpaMe, Taka 4e (—(al + AT — X.(O)Sj)) 3aj=123u (—(B[ + AT — ?lej(O)Sj» ca M-

marpunu. Ille nokaxem, ue X, @ Xfo) e HeorpunartenHa marpuna. ObpazyBame pasnukara

Mex 1y urepannonsa gopmyna (6) npu k=1, i=0u P (X (©) XZ(O),XE('O)).
0— P, (x{,x{, x{)
= —(al + AT = X)X = XxP(p1 + 4 -3, 5% ) - @ - X085, X + (@ + HHx”
—[—(a1 + 47 = XP5)X” = xO(p1 + 4 - 33, 5X7) = 0 = XV, XV + (@ + HX]
T.C.
—FO = —(al + AT = x{¥ ) (XY = X{” — (X = x)(BI + A= T3, S;X).
HOJIqu/IXMC JIMHENHO MaTpu4HoO ypaBHeHI/Ie Ha CI/IJIBGCT'I)p CIIPsAMO HCU3BCCTHATA MAaTpHIla

1 0
(Xl( ) _ Xl( )), Ha KOCTO JisiBaTa CTpaHa € HCOTpULATCIIHA. Pemenuero HaMHUpaMC KaTO pCIINM
JIMHEWHaTa cUcTeMa YpaBHCHMUI:

[(— (B1+ 4T - ﬁzlxj“’)sj)) Q1 + I, (— (et + 47 - X1(0)51)>] vec (X{V-X{") = —vec K.
O3HauaBame
© LY =—[(B1+47 - 33, X081, + 1,® (al + 47 — X5, )] k=1,2.3.
CrnenoBaTenHO ypaBHEHHETO 100MBa BUA L(lo) vec(Xl(l) —Xl(o)) = —vec Fl(o).
Matpumata X© = diag ( x© XZ(O),X3(O)) ¢ HeoTpHIIaTeTHA MATPUIA, a (—(al + AT —
X fo) 51)) " <—(ﬁ1 + AT — ?:1 Xj(o) 5}.)) ca M-matpumu. ToraBa mosrydaBame, 4e maTpuiiata

-1
L(lo) e M-matpuna, cnegoBaTeaHo (L(O)) > 0 u THH KaTO — Vec Fl(o) =0, 10

vec (X O —X (0)) (L(O)) vec Fl(o) =0,

KOETO O3HauaBa X1(1)_X1(0) >0, wm Xl(l) ZXfo). AHAJIOTMYHO MOTaT Ja ce JoKaxkaT
nepaenctara  X.0 = X\” u XV = X0, Cnenosaremno XM > X©. C rtopa noxasaxme
ceoiictso (i) mpu i=0.

[Ile mokaxem cBoiictBo (il) mpu i=0. 3Haem, ye MaTpuIUTE (—(al + AT —Xl(O)Sl)) u
(—(ﬁ] + AT — 3’3: 1 Xj(O) S,-)) ca M-matpunn. OGpazyBaMe MaTpuIiaTa

(10) (al + AT = X5, )(£, = xP) + (2, - xP) (1 + 4 - 23, 5,%).

W3non3same ureparmonna ¢popmyia (6) u 3a (10) mpecmstame

=afy + ATR, XS, X + R+ XA -, BiSX O + 0 + X085, X — (@ + px”.
Wsnomseame popmyna (7) 3a P;(X) u uzpasssame

(11) A™X + XA = =Py (X, X2, X3) + 232, K4S — Q.

Taxa 3a matpunarta (10) nony4yaBame

= —P1(X1;)?2;X3) + Z?:l)’(\lsjij -0
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+afy — X058 + & - X, K157 + Q1 + X V8, X0 — (a + pX”
5 o o 5 0 5 0 5 5 0 PN 0
= —P(%, %2, %) + (£-X)8, (2:-X) + 201 215 (£-X7) + (2 + B)(£,-x)
— Z(l)
=7,
Mo nomyckane Py(X;,X5,X3) =0, Sy, Sy S; ca nenonoxurennu, X;, X, X3 ca
HeOoTpHIaTeIHd, a cblo @+ B <0 u X =X ,EO) 3a k=1,2,3. CrnemoBarenHo IocieIHaTa

1
MaTpulia € HEMOJIOXKHUTEIIHA, Zf ) <0.
Torasa marpuiiara (10) 3a1aBa ClIeAHOTO MATPHYHO ypaBHEHHE

—(a+ AT = x5, ) (%, - xP) = (2—x)(p1 + A= 23, 5x7) = -z 2 0
011 L(10) vec(X1 X(l)) —vec Z(l)

CrnenoBareiHo X1 —X 1(1) >0, wm )?1 = Xl(l). AHajJOrMYHO MoOraT Ja ce JOKakaT
HepaBeHcTBaTa X, = X 2(1) nX; =X §1). Cnenosatenno X > X, C toa nokazaxme CBOHCTBO
(i) mpm i=0.

Ile noxaxem csoiicto (iii) mpu i=0. Pasrnexmame marpuiiata
(12) (af + a7 = xDs,) (2 - x) + (2-x2)(p1 + 4 - 23, 5;%7)

Ot wureparronna Gpopmyia (6) nmpu i=0 numame
—(al + AT = X0 5) x — Xl(l)(ﬁl +A-Y3, ijj(‘”) =0, + X059 — (a + p)x©
U M3pas3siBame
(13) —ATXD - x4 = 0, — X5, (X - %) = 33, xV5x0 + (o + p(x - x{).

Nznonszsame (11) u (13) u 3a matpunara (12) mony4yaBame
(a + AT = xPs,)(% = xP) + (2-xP) (1 + 4 - T3, 5,x7)
= _PI(X1’XZ’X3) + ()?1 - Xl(l))sl()?l - Xfl)) + 2]3‘—'1)?15]()?] - Xj(l))

F (P = X5 (P = X() 4 8 X5 (X0 -X0) + (@ + B - X
— W,
Taka cTurame 710 paBEHCTBOTO
5 5 1
4)  (ad+47 = x{s)(£ - xP) + (1 + £,-x V) (4 - 23, 5,%) = WP,

Toit kato X, 2 0, Pp(Xy, %5, %3) 20, X — X 20 3ak=1,2,3,a como u XV >0,

xP—x0>05,<0sak=123ua+p <010 W <o.

14 1
Paszraexmame Marpunara Xl - Xi ) KaTO HCEOTPUHATCIIHO PCHICHUC HA YPABHCHUCTO Ha
CI/I.IIBCCT’Bp BBB BHA

—(ar+ AT = x5, )(X - xP) = (R - xP) (1 + A- 2L, %) = -,
R 1
[TpencraBsme periennero: 0 < vec ( X; — Xfl) ) = — (L(ll)) vec W1( ),
-1
ITocnemHoTO O3Ha4aBa, 4e (L(ll)) € HEeOTpHUIATeJIHA MaTpHIa, T.€. MATPULIATE (—(al +

AT — Xl(l)sl)) u (—(,81 + AT — ?le],(l)Sj)) ca M-marpunu.
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-1 -1
1 1
AHaloru4yHoO MOJKE J1a Ce JIOKaXKe, 4e (L(2 )) " (L(3 )) Ca HEOTPULATEIIHU MaTPHULH, T.€.

MaTpHUIIUTE (—(al + AT — X,El)Sk)), k=2,3 u (—(,81 + AT — Z?=1XJ.(1)SJ-)> ca M-marpunu.
C ToBa gokazaxme cBoiictBo (iii) mpwu i=0.
Jlomyckame, 4e 3a i=I € H3IIBJIHEHO:
(a,) XO*D >x® > o,
(bT) X(T+1) S 21

(cr)(—(al +AT - X,Er“)sk)), k=123 u (—(31 +AT - z§=1xj(”1)5j)), ca M-

MaTPHIIH.
Tps6Ba 1a 10KaKeM, Y€ € U3IIBJIHEHO U rpu 1=r+1
(ar+1) xX(T+2) > x(r+1) > 0,

(brs1) XU*2 <X,

(Creq) (—(a1+AT—X,§”2)5k)), k=123 u (—(ﬁI+AT— §=1Xj”+2)5,-)) ca M-

MaTpuLu.

X§r+2) no wurepauuondu Qopmynu (6).

X1(r+1)’

[IpecmsATaMe MaTPULMTE Xl(HZ), XZ(HZ)

I[OKaSaTCJ'ICTBOTO CC MU3BHPIIBA 110 AHAJIOIMYCH HAYMH KAaTO IIBbPBO JOKa3BamMe, 4c Pk(

X é”l), X §r+1)) ca HeTIOJIOXKHUTEIIHN MaTPUIIU Ype3 MpeIcTaBIHeTo (8).

[To MeToma Ha MaremaTH4yecKaTa HHIYKIUS cienBa, de cBoiictBa (i), (i) u (iii) ca
u3neaHeHH pu 1=0,1,2,...

OT cBoiicTBaTa Ha WICHOBETE HAa MAaTpUUHUTE penuiy { X 1(0, X gi), X 3(1')}?‘;0 [IpaBUM U3BOJA,
Ye Te3W PO OT HEOTPUIATCIHH MATPHIM Ca MOHOTOHHHM M OTPAHUYEHH M CIICIOBATEITHO
cxomsmmy. O3HayaBaMe IPaHMIMTE HA PEIUINTE choTBETHO X4, X,, X3. Crnen rpannden npexon B
uTepanroHHn Qopmynn (6) ce ycTaHOBsBa, 4ye HeoTpuuartennute Matpumu X,,X,, X; ca
pelieHus Ha ypaBHEHHETO (2).

4  YucjeHU eKCIIePUMEHTH

[lle HampaBMM EKCIIEPUMEHTH C LIeJI CpaBHSBAaHE M3YUCIMTEIHUTE KauecTBa Ha JIBaTa
merona: Mmetoa Ha Hroron ¢ mapamerpu (MHII) u meton Ha Cunectsp Il yckopen ¢ mapameTpu
(MC2VII) 3a Tpuma Urpadu.

Ha Bcsika cThrika popMupamMe HOBM MaTpUYHU KOSQUIIMEHTH U CIIEJ TOBA C JIBaTa METoJa
€JHOBPEMEHHO ThpcHUM pemieHueto. IIpecmsatannara ce n3pbpmBar ¢ To4HOCT £ =10e—11 Ha
KOMITIOTBp ¢ 64-OutoBa omnepanmonHa cucrema Windows 7 Professional u xapayepHu
napamerpu: mporecop — Intel Core i3 CPU M380 @ 2.53 GHz, RAM mamer — 4 GB.
Marpuunure koedunuentun A, B, Q, u R; 3a 1=1,2,3 ca nedpunupann upez MatLab (R2015a).

Kato pe3ynTar 3a Bcsika CTOMHOCT Ha N M BCEKH METOJ HUE OTOeNsA3BaMe CIeTHUTE MapaMeTpu:
"Max It" — naii-ronemust Opoit urepauun, "Av It" — cpennust Opoit ureparmu u ,,CPU time* —
IPOLIECOPHOTO BPEME, B CEKYH/IH, 32 PaO0OTa Ha CHOTBETHHS METO/I 32 ChOTBETHUTE IOBTOPEHHUSL.

Havamaure matpumu m3bupame X, © = X0 =X =0, re. K®=0 u cmex Toma

npecmatame K@, K® . K . no ureparmonna ¢popmyna (3) 3a merona a HioTom.
Penunara e cxojsima 1 HAMEPEHOTO pelleHne U3MbJIHBa ycnoBusaTa Ha Teopema 2. 3a meTozna

na Cumsectsp Il yexopen X0 =X =X =0, Xl(l) ce mpecMsTa Mo WTeparuoHHa Gopmyna
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(6), X ce usnomsa 3a mpecmarane Ha X\’ u cvoreerno X u X’ ce usmonssar 3a
npecmstane Ha X ”, KOETO BOJM /10 yCKOpsIBaHE HA METO/a. B pe3ynTar Ha Te3u mpecMsTaHus

nomyuenata peqmma X, X @ X® e cxonsma u n3nbnmasa ycnosuaTa na Teopema 3.
VYyactBamure marpunu ca M-marpunm u cnopen Teopema 1. mpurexaBaT CBOWCTBOTO
CTaOMIJIHOCT, KOETO 03HAauaBa, Y€ HAMEPEHUTE PELICHUs ca CTaOMIM3UPAIlU PELIeHuUs.

IMpumep 1.

Alpha=-0.001; Beta=-0.002; k=1:100
A=abs(randn(n))/100; s=max(abs(eig(A)))+5;
for i=1:n, A(i,i)=-(A(i,i))-s; end

B1 =zeros(n,1); B1(1)=abs(randn(1,1))/2;
B2=eye(n,n); B2(n,n)=n/3;

B3=B2;

Q1=zeros(n,n); Q1(1,1)=n; Q1(n,n)=1;

R11=-1;

Q2=Q1, Q3=Q2,

R22=eye(n,n); R22(1,1)=-40; R22(n,n)=-40;

R33=R22;

Tab6mmma 1. Ilpu 100 noBTOpenus
N MHII MC2VII
Max It Av It CPU time Max It Av It CPU time

4 5 4,05 0,391s 5 4,06 0,889s
5 5 4,09 0,264s 5 4,13 1,109s
6 8 4,10 0,360s 11 4,26 1,217s
7 5 4,12 0,357s 5 4,29 1,389s
8 5 4,21 0,968s 6 4,66 1,685s

B npumep 1. MHII e no-65p3 ot MC2VII.

IIpumep 2.

Alpha=-0.001; Beta=-0.002; k=1:200
A=abs(randn(n))/10; s=max(abs(eig(A)))+5;
for i=1:n, A(i,i)=-(A(i,1))-s; end

Bl =zeros(n,1); B1(1)=abs(randn(1,1));
B2=0.5*eye(n,n); B2(n,n)=sqrt(n);

B3=B2;

Q1=0.25*eye(n,n); Q1(1,1)=n/50; Q1(n,n)=1/50;
R11=-0.75;

Q2=0.05*eye(n,n);

Q3=0.01*eye(n,n);

R22=-10*eye(n,n); R22(1,1)=-50; R22(n,n)=-50;
R33=R22;
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MCTO,Z[I/I 3a TbpCCHEC Ha CTa6I/IJ'H/I3I/IpaH_IO peuicHuc

Tabnmma 2. Ipu 200 moBTOpeHus

N MHII MC2VII

Max It Av It CPU time Max It Av It CPU time
100 4 3,405 60,642s 4 3,405 89,4055
120 4 3,360 99,341s 4 3,360 127,043s
140 4 3,395 176,009s 4 3,395 184,196s
160 4 3,315 270,605s 4 3,315 257,840s
180 4 3,290 387,325s 4 3,290 327,692s
200 4 3,290 526,239s 4 3,290 410,850s

B npumep 2. MC2VII craBa mno-6bp3 or MHII mpu pasmepHOCT Ha MaTpUYHUTE
KoeumeHT n >160.

5 MH3Boam

HanpaBuxMe ekcHepuMEHTH 3a M3YMCIABaHE Ha CTaOWIM3MpAllo pelIeHHue Ha
HECHMETPHYHOTO ypaBHEHHE Ha Pukatu (2) U cpaBHUXME pe3yNTaTHTE 3a [BAaTa IPEUIOKCHH
merona. MHII e mo-66p3 ot MC2VII 3a manku pa3MepHOCTH Ha MAaTPUYHUTE KOCPHUIIMECHTH.
MC2VII usnpeBapsa u crasa no-0sp3 or MHII 3a n>160. [IMC2VII pemaBa Tpu ypaBHEHUS
Ha CuiBecTbp Ha Beska urepanuoHHa crblika. MHII pemaBa nuHeliHM ypaBHEHHUS € TOJIEMHU
pasmepHocTu. brounara ctpykrypa npu MHII ro 3a6aBs npu ronemu croiiHoctr Ha n. MC2VII
MMa MPEJUMCTBO B CiIy4all Ha pellaBaHe HA TPU HE3aBHCUMH JIMHEHHU MATPUYHU YPABHEHUS.
ITo To3u Hauna MC2VII e epexruHa antepnatuBa Ha MHII.

JIUTEPATYPA:

[1] Azevedo-Perdicoulis, T., Jank, G. Linear quadratic Nash games on positive linear systems, European Journal of
Control, 11, (2005),1-13.

[2] Jank, G., Kremer, D., Open loop Nash games and positive systems — solvability conditions for nonsymmetric
Riccati equations. Proceedings of MTNS, Katolieke Universiteit, Leuven, Belgium, (2004).

[3] Ma, Ch.,, Lu, H., Numerical study on nonsymmetric algebraic Riccati equations, Mediterranean Journal of
Mathematics, Vol. 13, Issue 6, (2016), 4961-4973.

[4] van den Broek, W. Uncertainty in Diferential Games. PhD-thesis Univ. Tilburg, Netherlands, (2001).

[5] van den Broek, W., Engwerda, J., Schumacher, J. Robust Equilibria in Indefinite Linear Quadratic Diferential
Games, Journal of Optimization Theory and Applications, 119, 3, (2003), 565-595.

Heau baeBa
E-mail: nelilnb@abv.bg

- 159 -






MATTEX 2018, SECTION MATHEMATICS AND
CONFERENCE PROCEEDING, v. 1, pp. 161- 166 PHYSICS

FOR MATRIX EQUATION X — A*XA — B*X'B = [*

AYNUR A. ALI

ABSTRACT: In this paper we studi the matrix equation X — A*XA — B*X'B = L.
Sufficient conditions for the existence of a positive definite solution have been obtained. An iterative
method is proposed to find a positive definite solution of the equation under consideration. It is proved
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3A MATPUYHOTO YPABHEHHUE X — A*XA - B*X !B =1

AVHYP A. AiIn

ABCTPAKT: B ma3su paboma uzyuasame mampuuromo ypasnenue X —A*XA—B*X 1B = I.
Honyuenu ca docmamvunu yciosus 3a CbueCmey8ane Ha NONOICUMENHO onpedeleno peuierue. TIpeo-
JLOJICEH e UMePAYUOHEH MEemO0 30 HAMUPAHE HA NOJLOJCUMEHO ONPEOETHO PEULEHUE HA PA32ILENCOAHOMO
VypasHnenue. Jlokazana e cxooumMoCmma Ha mo3u umepayuonetn npoyec. Teopemuynume pesyimamu ca

UIIOCmMpupat ¢ YuCieHu npumepu.

1 BbBegenmue

B Tasu crarus pas3riiciKaaMe MaTpuIHOTO YPAaBHCHUC
(1) X -A*XA-B*X'B=1,

KbJeTo A u B ca KBaJpaTHH MaTpHIH, a [ ¢ eMTMHIYHATA MATPHIIA.

B cnyuait Ha B = 0, ypaBHenueTo (1) ce cBexaa 10 mo3Haroro ypaBHeHue Ha Cteitn X —
A*XA = I,anpu A = 0, ce cBexaa 10 100pe u3yuyeHoTo ypaBHenne X — B*X !B = |
[2,3,4, 5, 6] u TaxHara nuTeparypa. 3a HEero € JoKa3aHo, Y€ BUHATH UMa MOJI0KUTETHO OIPEIETICHO
pelieHue.

D.Gao [1] u3cnenBar ypaBHEHHETO

) X —AXPA-B*X“B=1 (0<p,q<1).

B [1] e noka3aHo, ue ypaBHEHHETO (2) BUHATH UMa SAMHCTBEHO MOJIOKHUTEITHO OMPEICIICHO pellie-
HUE U ca TPEJIOKEHH JBa UTEpAllMHHU METO/A 3a MOoJlydaBaHe Ha ToBa pemieHue. [Ipes mocen-
HHTE FOIMHH 0OEKT Ha U3CNeBaHe ca u ypaBHenusaTa X + A*X 1A — B*X 1B = [ [13, 14, 18],
X+ AX1TA+B* X 'B=1[7,8,12], X +>" | At X tA;, = I[10, 11, 15, 16].

MortuBupanu ot padorute [1, 3, 14, 18], B Tazu pabora uscneaBame ypapHeHnueto (1). Ilo-
JYYEHH ca IOCTaThYHH YCJIOBUS 3a CHIIECTBYBAaHETO HA MOJOKUTEIIHO ONPEICICHO PEIICHHE Ha
ToBa ypaBHeHHeE. [IpesiokeH € uTepaloHeH METO] 332 HAMHPAHE Ha MOJIOKUTEIHO OTMPEAeTICHO
pelIeHre U € H3CJIe[IBaHa HellHaTa CXOMUMOCT. Hakpasi, ¢ HIKOU YHCIICHN €KCTIEPUMEHTH € WITFOC-
TPUPAHO TEOPETUIHOTO ChIbPKAHHE.

*Partially supported by Scientific Research Grant RD-08-145/2018 of Shumen University.
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N3nomn3Banu ca ciaepnute o3HaueHus:: A > 0(A > 0), o3HauaBa ye A e epMUTOBA MOIOXKH-
TEJIHO ompejielnieHa (momyonpenenena) marpuna; 3a N > M > 0, ¢ [M, N| o3na4aBaMe MHOXKeCT-
BoTo oT Marpui {X : M < X < N}; A\(C') e cobcTBeHa CTOWHOCT Ha . X 1. €PMUTOBA MaTpPHIIA
C'; p(A) e cuexrpannus panuyc; u | A|| e cnexrpannara Hopma (||A|| = /p(A*A)).

2 OcHOBHHU pe3yJTaTH

Hpem/l Aa U3KAKEM OCHOBHUTC pPC3YyJITaTH LIC BBBCACM €/IHA ITOMOIIIHA JICMA, KOATO IIC U3-
I10JI13BaM€.

Jlema 2.1. [17, Lemma 2.2.] Hexa C' u W ca kéadpamnu mampuyu.

1. axo p(C) < 1, mozasa ypasnenuemo na Cmeiin X —C* X C' = W uma eduncmeeno peurenue
PuP >0(P >0), koecamo W > 0(W > 0)

2. axo uma uaxakea mampuya P > 0, maxasa, ue P — C* PC' e nonoscumenno onpedene-
Ha(nonyonpedenena) mampuya, mo p(C) < 1(p(C) < 1)

Hexka BbBenieM U 10KakeM I'bPBHSI OCHOBEH PE3YIITAT B ClI€AHATa TEOpEMa
Teopema 2.1. Hexa ypasnenuemo (1) uma nonosxcumenno onpedeneno peuienue X . Tocasa
@ p(A) <1,
(i) p(X7'B) <1,
(iii) X > M, xvoemo M e pewenue na ypasnenuemo X — A*X A = 1.

Loxazamencmeo:
Hexka ypaBHenue (1) nma 1osoxuTenHo onpeneneHo pemenue X . YpaBHaenue (1) 3anuceame
0 CJIEHUSI HAYUH

3) X -A'XA=1+BX"'B.

3a pacHara crpaa Ha ypasHenue (3) mpu X > 0 mmame [ + B*X 1B > 0. Or ycnosue 2. Ha
Jlema 2.1 3a ypaBuenuero (3) cnensa, ue p(A) < 1. Ipu mokasarenctBoro Ha (ii) n3non3Bame
aHAJIOTHYHU Pa3ChKACHUS Ha TOPHOTO.

Or (1) nmomyuaBame

4) X —(BXY)V'X(X'B)=T+AXA.
3a nsacHaTa cTpana Ha ypaBHeHueTo (4) mmame [ + A* X A > 0. OtnoBo ot Jlema 2.1 ciexBa, ye
p(X'B) < 1.

I[Tpu HanMYHMe Ha MOJIOKHUTEITHO ONPEIENICHO peleHre Ha ypaBHeHue (1) mokazaxme, ue p(A) <
1. Coracuo Jlema 2.1 touka 1 npu p(A) < 1 ypaBaenunero X — A* X A = [ uma eqUHCTBEHO pe-
utenne M > 0, koeto ce 3a1aBa ¢ popmynara M = Y >° (A*)"A’ [17]. Pasmiexaame

X -A*XA=I1+BX'B
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3a MarpuunoTo ypasuenne X — A*XA - B*X 1B =1

M—A"MA=1.

Crnen nowIeHHO W3BaKJaHE HAa TOPHUTE YpaBHEHMSI I10Jy4aBaMe
%) (X —M)—-A(X-M)A=B"XB.

3a nsicHata ctpana Ha ypaBHeHueto (5) mpu X > 0 umame B* X B > 0. CoracHo Jlema 2.1 Touka
1 umame X > M. U
Cera pa3zmiexxaame CIeIHHUS UTEPAIIMOHEH TPoIecC

X0:]7 %:ﬁ], B>]_
6) Xepr =1+ A" XA+ BY,'B, k=0.1,...
Yo =+ AV, A+ B*X;'B,

Teopema 2.2. Axo || A||? + || B||* < 1, mo ypasnenuemo (1) uma edurncmeeno noiojicumento on-
peodeneno pewenue X. Oceen mosa umepayuonnus npoyec (6) 3a

L+ | Bl

B> —r
1—[lA]]?

€ X005 KoM eOUHCMEEHONO NONLoNCUmenHo onpedenero peutenue X € (I, BI).

Hokazamencmeo. 3a penutute { Xy } u {Y} }, renepupanu ot ureparmontus nporec (6) nma-
Me
1
X, =1+ A XA+ BY, ! = I+A*A+EB*B >1=X

Yi :I—i—A*Y}JA—i—B*Xng:I—i—ﬁA*A—i—B*B < Bl =Y.
Pasrexxname paznukara Ha Y7 u X,
1
Y- X, = BA'A+B*B—A"A— EB*B
1
= (B-1A"A+ (1 - B>B*B >0

Cnepomarenno Xg < X; < Y] < Yy Heka X, < X <Y, <Yy e mokaxem, ue X <
Xit1 < Yirq < Y. Pazmexname

Xpp — Xy = A'X A+ BY,'B-A*X, A+ B*Y, \B
AY(Xp — Xp)A+ B (Y, ' =Y, B
0,

v

Vi =Yy = AYi A+ BX. ! B-AY,A-B'X,'B
= A (Y —V)A+ BY(X. Y - X )B
0,

v
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Vigr — X1 = AVA+BX,'B- A'X, A-BY, 'B
= AV, - XA+ B(X, ' -V, "B
0.

v

ChriacHO MeTola Ha Maremarmueckara uHaykuus peauiute { X} u {Y;} ca cxomsmm. Heka
lim, oo X, = X nlim,_. Y, =Y. Ot (6) umame

X = I+ A XA+BY 'B

Y = I+AYA+B*X'B.

Cren nouleHHO U3BaXKJ1aHE Ha JIBETE€ YPAaBHEHHUS, 10JIydyaBame

Y —X =AY - X)A+ B X (Y —X)Y " 'B

X =Y < JAIPIY = X[+ [|X Bl BIIY — X||
< JAIPIY = XI[+ X HIBIHY I BIY - X
< (AP +1BIPIY — XII.
Twit karo (||A* + || B[|*) < 1, X =Y. Cnenopareinso ypaBHeHHETO HMa EIIEHHE.
Heka X u X ca [Be pasIMuYHU TIOJOXUTENHO ONPE/IEIIEHN pelleHns Ha ypasHenueto (1).
Torasa

X = I+A*XA+B*X !B,
X = I+A*XA+BX'B,
X = A(X-X)A-BX 'YX -X)X"'B.

X —
Ot Tyx
(7) 1X = X[ < (JAIP+ [ BIH)X - X
Twit karo (|| A|2 + || B|?) < 1, X = X.
C ToBa Teopemara € JJoKa3aHa. U

3  YwuciieHM eKCIIePUMEHTH

B Ta3u cexuus gaBaMe HAKOM MPUMEPH, KOUTO HIFOCTPUpAT, ue MarpudauTe peaunu { Xy}
u {Y}}, nepunupanu ot (6), ca CXOASAIIN KbM EIHHCTBECHOTO ITOJOKHUTEIHO ONPEISICHO PEIICHUE
X na ypaBuenuerto (1).

Pasriexname
R(Xy) = || Xy — A* XA — B*X,'B —I|.

3a cTom KpuTepuil U3IM0JI3BaMe
1Y — Xi| < 1071,

Hpumep 3.1. Pazenexcoame mampuunomo ypasnerue (1) ¢

1 5 3 2 7 96 8

1| -1 -6 3 4 1 7 5 8 3
A—% —4375’3_7_0 9 8 6 7
1 8 21 11 59 3



3a MarpuunoTo ypasuenne X — A*XA - B*X 1B =1

1+||B|?
1=l A]]?
A u B umame (||A]]* + ||BJ]*) = 0.2141 < 1. Cnen 11 ureparuu 1o urepanuonuus Metos (6)

MOJTy4aBaMe

Paszrnexxname urepanmonnus npotec (6) c Xo = I u Yy = = 1.2256. 3a marpunure

1.0592 0.0411 0.0349 0.0227
0.0411 1.0788 0.0450 0.0320
0.0349 0.0450 1.0641 0.0466
0.0227 0.0320 0.0466 1.0403

R(Xy) = 4.7877e " R(Yy,) = 4.8721e 1!
RH = 4.55436713.

Xn~Yh~

Ipumep 3.2. Pasenexcoame ypasuenue (1) c

41 15 23 35 66 23 21 23 25 32
1 25 12 27 45 21 1 21 45 60 42 33
=— 23 27 28 16 24 |, B=—1| 23 24 34 18 17
8201 15 45 16 52 65 8301 13 42 18 44 30
66 21 24 65 35 32 33 26 30 26
Paszrnexxname ureparmonnus npotec (6) c Xo = I u Yy = 1J—r||||§||||z = 1.1454. 3a marpunure

A u B e mnwaneno (|| A]|? + || B||*) = 0.1387 < 1. Cnen 9 urepariuu no UTepamEoHHHs MPOLEC
(6) momyuyaBame

1.0154 0.0107 0.0177 0.0174 0.0151
0.0107 1.0137 0.0173 0.0161 0.0148
Xgr Yy~ 0.0177 0.0173 1.0826 0.0216 0.0218
0.0174 0.0161 0.0216 1.0242 0.0209
0.0151 0.0148 0.0218 0.0209 1.0224

R(X,) = 8.2086e 2, R(Yy) = 8.2086e 2,
Ry = 2.2219¢ 719,
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