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ABSTRACT: In this survey we discuss some classical problems

about recognition of prime numbers. Various tests are studied that can

be further programmed on a computer to �nd big primes.
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1 Introduction

Prime numbers (or just primes) are natural numbers, like 2, 3, 5,
7, 11, . . . , which are not multiples of any smaller natural number
(except 1). If a natural number is neither 1 nor a prime, it is called a
composite number.

For example, among the numbers 1 through 6, the numbers 2, 3,
and 5 are the prime numbers, while 1, 4, and 6 are not prime. 2 is a
prime number, since the only natural numbers dividing it are 1 and 2. 3
is prime, as no numbers other than 1 and itself divide evenly into it. 4
is composite, since 2 is a number that divides evenly into it, in addition
to 1 and itself. 5 is prime as only 1 and itself divide evenly into it. 6 is
divisible by 2 and 3, therefore it is not prime.

No even number greater than 2 is prime because by de�nition, as
any such even number n has at least three distinct divisors, namely 1,
2, and n. Accordingly, the term odd prime refers to any prime number
greater than 2. Similarly, when written in the usual decimal system,
all prime numbers larger than 5 would end in 1, 3, 7, or 9, since even
numbers are multiples of 2, and numbers ending in 0 or 5 are multiples
of 5.

Prime numbers are important, since the fundamental theorem in
arithmetic states that every natural number greater than 1 is a product
of prime numbers, and moreover, in an essentially unique way. Prime
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numbers are like cousins, members of the same family, resembling one
another, but not quite alike.

There are hints in the surviving records of the ancient Egyptians
that they had some knowledge of prime numbers: the Egyptian frac-
tion expansions in the Rhind papyrus, for instance, have quite di�erent
forms for primes and for composites. However, the earliest surviving
records of the explicit study of prime numbers come from the Ancient
Greeks. Euclid's Elements (circa 300 BC) contain important theorems
about primes, including the in�nitude of primes and the fundamental
theorem of arithmetic. Euclid also showed how to construct a perfect
number from a Mersenne prime. The Sieve of Eratosthenes, attributed
to Eratosthenes, is a simple method to compute primes, although the
large primes found today with computers are not generated this way.

It is quite natural, when studying the set of prime numbers, to
ask the following questions, which we phrase informally as follows:

1. How many prime numbers are there?

2. How to recognize whether a natural number is a prime?

3. Are there functions de�ning prime numbers?

4. How are the prime numbers distributed?

5. Which special kinds of primes have been considered?

In this paper we will concentrate on the �rst two questions. For
further information we refer the reader to the monograph [3].

2 How many prime numbers are there?
Firstly, let us note that any natural number n > 1 has a prime

divisor. We can easily verify this claim using mathematical induction.
Indeed, if n itself is not a prime, we can decompose it as a product of
two numbers which are smaller than n, so we can apply the induction
assumption on either of them. From this fact also follows the existence
part of the main theorem in the arithmetic, namely every natural number
n > 1 is a product of primes (see the beginning of the next section and
for further reading [4]).

The answer to the question of how many prime numbers exist is
given by the fundamental theorem:

Theorem 2.1. There exist in�nitely many prime numbers.
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There are at least 10 di�erent proofs of the latter theorem (by Eu-
clid, Kummer, Goldbach, Schorn, Thue, Perott, Auric, M�etrod, Wash-
ington, and Furstenberg's). We shall give three of them below.

I Euclid's proof.

Suppose that p1 = 2 < p2 = 3 < · · · < pr are all the primes.
Let P = p1p2 · · · pr + 1 and let p be a prime dividing P ; then p cannot
be any of p1, p2, . . . , pr, otherwise p would divide the di�erence P −
p1p2 · · · pr = 1, which is impossible. So this prime p is still another
prime, and p1, p2, ..., pr would not be all the primes.

II Kummer's proof.

Suppose that there exist only �nitely many primes p1 < p2 <
· · · < pr. Let N = p1p2 · · · pr > 2. The natural number N − 1 > 1 has
a prime divisor pi in common with N ; so, pi divides N − (N − 1) = 1,
which is absurd!

III Furstenberg's proof.

This is an ingenious proof based on topological ideas. Since it is so
short,we cannot do any better than transcribe it verbatim; it appeared
in 1955:

In this note we would like to o�er an elementary �topological�
proof of the in�nitude of the prime numbers. We introduce a topology
into the space of integers S, by using the arithmetic progressions (from
−∞ to +∞) as a basis. It is not di�cult to verify that this actually
yields a topological space. In fact, under this topology, S may be shown
to be normal and hence metrizable. Each arithmetic progression is closed
as well as open, since its complement is the union of other arithmetic
progressions (having the same di�erence). As a result, the union of any
�nite number of arithmetic progressions is closed.

Consider now the set A =
⋃
Ap, where Ap consists of all multiples

of p, and p runs through the set of primes ≥ 2. The only numbers not
belonging to A are −1 and 1, and since the set {−1, 1} is clearly not an
open set, A cannot be closed. Hence A is not a �nite union of closed
sets which proves that there are an in�nity of primes.
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3 How to Recognize Whether a Natural Num-

ber is a Prime

In the article 329 of Disquisitiones Arithmeticae, Gauss (1801)
wrote:

"The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is known
to be one of the most important and useful in arithmetic. . . . The
dignity of the science itself seems to require that every possible means
be explored for the solution of a problem so elegant and so celebrated."

The �rst observation concerning the problem of primality and
factorization is clear: there is an algorithm for both problems. By this,
we mean a procedure involving �nitely many steps, which is applicable
to every number N and which will indicate whether N is a prime, or, if
N is composite, which are its prime factors. Namely, given the natural
number N , try in succession every number n = 2, 3, . . . up to [

√
N ] (the

largest integer not greater than
√
N) to see whether it divides N . If

none does, then N is a prime. If, say, N0 divides N , write N = N0N1,
so N1 < N , and then repeat the same procedure with N0 and with N1.
Eventually this gives the complete factorization into prime factors.

It should, however, be noted that for large numbers N , it may
take a long time with this algorithm to decide whether N is prime or
composite. This touches the most important practical aspect, the need
to �nd an e�cient algorithm - one which involves as few operations as
possible, and therefore requires less time to be performed.

I The Sieve of Eratosthenes.

As we have already said, it is possible to �nd if N is a prime using
trial division by every number n such that n2 ≤ N . Since multiplication
is an easier operation than division, Eratosthenes (in the 3rd century
BC) had the idea of organizing the computations in the form of the well-
known sieve. It serves to determine all the prime numbers, as well as the
factorizations of composite numbers, up to any given number N . This
is illustrated now for N = 40.

Do as follows: write all the numbers up to 40; cross out all the
multiples of 2, bigger than 2; in each subsequent step, cross out all the
multiples of the smallest remaining number p, which are bigger than p.

- 18 -



On bigger primes

It su�ces to do it for p2 < 40.

2 3 �4 5 �6 7 �8 �9 �1�0
11 �1�2 13 �1�4 �1�5 �1�6 17 �1�8 19 �2�0
�2�1 �2�2 23 �2�4 �2�5 �2�6 �2�7 �2�8 29 �3�0
31 �3�2 �3�3 �3�4 �3�5 �3�6 37 �3�8 �3�9 �4�0

II Classical Primality Tests Based on Congruences.

Fermat's little theorem says that if p is a prime and a is any
natural number not a multiple of p, then ap−1 ≡ 1 (mod p). However,
we note right away that a crude converse of this theorem is not true �
because there exist composite integers N , and a ≥ 2, such that aN−1 ≡ 1
(mod N).

Euler generalized Fermat's little theorem by introducing Euler's
function. For every n ≥ 1, let ϕ(n) denote the number of integers a, 1 ≤
a < n, such that gcd(a, n) = 1 (the greatest common divisor of a and n
is 1, or equivalently, a and n are relatively prime).

Euler proved the following:

Euler's Theorem. If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Nevertheless, a true converse of Fermat's little theorem was dis-
covered by Lucas in 1876. It says:

Test 1. Let N > 1. Assume that there exists an integer a > 1 such
that:

(i) aN−1 ≡ 1 (mod N),

(ii) am 6≡ 1 (mod N) for m = 1, 2, . . . , N − 2.

Then N is a prime.

Defect of this test: it might seem perfect, but it requires N − 2
successive multiplications by a, and �nding residues modulo N � too
many operations.

Proof. It su�ces to show that every integer m, 1 ≤ m < N , is prime to
N , that is, ϕ(N) = N−1. For this purpose, it su�ces to show that there
exists a, 1 ≤ a < N , gcd(a,N) = 1, such that the order of a (mod N) is
N − 1. This is exactly spelled out in the hypothesis.
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In 1891, Lucas gave the following test:

Test 2. Let N > 1. Assume that there exists an integer a > 1 such
that:

(i) aN−1 ≡ 1 (mod N),

(ii) am 6≡ 1 (mod N) for every m < N , such that m divides N − 1.

Then N is a prime.

Defect of this test: it requires the knowledge of all factors of
N − 1, thus it is only easily applicable when N − 1 can be factored, like
N = 2n + 1, or N = 3× 2n + 1.

The proof of Test 2 is, of course, the same as that of Test 1.
In 1967, Brillhart & Selfridge [2] made Lucas' test more �exible:

Test 3. Let N > 1. Assume that for every prime factor q of N −1 there
exists an integer a = a(q) > 1 such that

(i) aN−1 ≡ 1 (mod N),

(ii) a(N−1)/q 6≡ 1 (mod N).

Then N is a prime.

Defect of this test: once again, it is necessary to know the prime
factors of N − 1, but fewer congruences have to be satis�ed.

Proof. It is enough to show that ϕ(N) = N−1, and since ϕ(N) ≤ N−1,
it su�ces to show that N − 1 divides ϕ(N). If this is false, there exists
a prime q and r ≥ 1 such that qr divides N − 1, but qr does not divide
ϕ(N). Let a = a(q) and let e be the order of a mod N . Thus e divides
N − 1 and e does not divide (N − 1)/q, so qr divides e. Since aϕ(N) ≡ 1
(mod N), then e divides ϕ(N), so qr|ϕ(N), which is a contradiction, and
concludes the proof.

To make the primality tests more e�cient, it is desirable to avoid
the need to �nd all prime factors of N − 1. So there are tests that only
require a partial factorization of N − 1. The basic result was proved by
Pocklington in 1914, and it is indeed very simple:

Theorem 3.1. Let N − 1 = qnR, where q is a prime, n ≥ 1, and q does
not divide R. Assume that there exists an integer a > 1 such that:
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(i) aN−1 ≡ 1 (mod N),

(ii) gcd(a(N−1)/q − 1, N) = 1.

Then each prime factor of N is of the form mqn + 1, with m ≥ 1.

Proof. Let p be a prime factor of N , and let e be the order of a mod p,
so e divides p− 1; by condition (ii), e cannot divide (N − 1)/q, because
p divides N ; hence, q does not divide (N − 1)/e; so qn divides e, and a
fortiori, qn divides p− 1.

The above statement looks more like a result on factors than a
primality test. However, if it may be veri�ed that each prime factor
p = mqn + 1 is greater than

√
N , then N is a prime. When qn is fairly

large, this veri�cation is not too time consuming.
Pocklington gave also the following re�nement of his result above:

Theorem 3.2. Let N − 1 = FR, where gcd(F,R) = 1 and the factor-
ization of F is known. Assume that for every prime q dividing F there
exists an integer a = a(q) > 1 such that:

(i) aN−1 ≡ 1 (mod N),

(ii) gcd(a(N−1)/q − 1, N) = 1.

Then each prime factor of N is of the form mF + 1, with m ≥ 1.

The same comments apply here. So, if F >
√
N , then N is a

prime. This result is very useful to prove the primality of numbers of
certain special form. The old criterion of Proth (1878) is easily deduced:

Test 4. Let N = 2nh + 1 with h odd and 2n > h. Assume that there
exists an integer a > 1 such that a(N−1)/2 ≡ −1 (mod N). Then N is
prime.

Proof. N − 1 = 2nh, with h odd and aN−1 ≡ 1 (mod N). Since N is
odd, then gcd(a(N−1)/2 − 1, N) = 1. By the above result, each prime
factor p of N is of the form p = 2nm+ 1 > 2n. But N = 2nh+ 1 < 22n,
hence

√
N < 2n < p and so N is prime.
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In the following test (using the same notation) it is required to
know that R (the nonfactored part of N − 1) has no prime factor less
than a given bound B. Precisely:

Test 5. Let N − 1 = FR, where gcd(F,R) = 1, the factorization of F is
known, B is such that FB >

√
N , and R has no prime factors less than

B. Assume:

(i) For each prime q dividing F there exists an integer a = a(q) > 1
such that aN−1 ≡ 1 (mod N) and gcd(a(N−1)/q − 1, N) = 1.

(ii) There exists an integer b > 1 such that bN−1 ≡ 1 (mod N) and
gcd(bF − 1, N) = 1.

Then N is a prime.

Proof. Let p be any prime factor of N , let e be the order of b modulo
N , so e divides p − 1 and also e divides N − 1 = FR. Since e does not
divide F , then gcd(e,R) 6= 1, so there exists a prime q such that q|e and
q|R; hence, q|p − 1. However, by the previous result of Pocklington, F
divides p − 1; since gcd(F,R) = 1, then qF divides p − 1. So p − 1 ≥
qF ≥ BF >

√
N . This implies that p = N , so N is a prime.

The paper of Brillhart, Lehmer & Selfridge [1] contains other vari-
ants of these tests, which have been put to good use to determine the
primality of numbers of the form 2r + 1, 22r ± 2r + 1, 22r−1 ± 2r + 1.

We have already said enough and will make only one further com-
ment: these tests require prime factors of N − 1.
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