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pling of dissipative and antidissipative operators and having a limit of

the corresponding correlation functions.

KEYWORDS: Nonselfadjoint operator, dissipative operator, tri-
angular model, characteristic operator function, operator colligation, cou-
pling

1 Introduction
This paper is dedicated to the further development of one of the

directions in the nonselfadjoint operator theory founded by M.S. Liv�sic
and his associates.

After the classical book of John von Neumann "The Mathematical
Foundations of Quantum Mechanics" (where the quantum mechanics is
presented as a uni�ed theory based on the spectral theory of selfadjoint
operators in Hilbert spaces) the e�orts of many mathematicians show
that the spectral analysis of nonselfadjoint operators cannot be made
to �t into the framework of the theory of selfadjoint operators and its
simplest generalizations. Nonselfadjoint operators arise in the discussion
of processes that proceed without conservation of energy.

In the end of 1970s there were many prerequisites for investiga-
tions of nonselfadjoint operators. The theory of nonselfadjoint operators
is based on:

� the theory of the characteristic functions and the triangular
models of M.S. Liv�sic;
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� the theory of dilations and functional models of B.Sz.-Nagy and
C. Foias;

� the scattering theory of P. Lax and R. Phillips.
The �rst major method in the nonselfadjoint operator theory was

initiated in the middle of the 1940s by M.S. Liv�sic [11, 13]. The main
tool here is the characteristic operator function, which is associated with
an arbitrary operator A in a Hilbert space H in the following way

I − iΦ(A− λI)−1Φ∗J,

where J is a signature operator (i.e. J = J∗ = J−1) and

Φ∗JΦ =
A−A∗

i
.

This function serves as a unitary invariant of the operator A and in many
important cases it is much easier to analyze than the original operator.
The characteristic operator function has intriguing properties. The main
point is that there is a relation between invariant subspaces of the opera-
tor and factorizations of its characteristic function. This result is proved
by M.S. Liv�sic and V.P. Potapov in [17]. This relation and Potapov's the-
orem allow to M.S. Liv�sic to construct the so-called triangular model of
nonselfadjoint operators with �nite dimensional imaginary parts ([12]).

Let H be a separable Hilbert space and let A be a bounded linear
nonselfadjoint operator in H with a �nite dimensional imaginary part
dim(A − A∗)H < +∞ (i.e. the so-called operator with a �nite non-
hermitian rank.) Analogously it can be considered the case when the
imaginary part of A belongs to the trace class.

In the case when the operator A is a dissipative operator in a
Hilbert space H (i.e. (A− A∗)/i ≥ 0) it follows immediately that there
exists the limit

lim
t→+∞

(eitAf, eitAf), f ∈ H.

The existence of this limits ensures the existence of the wave operator
W+(A∗, A) as a weak limit

(W+(A∗, A)f, g) = lim
t→+∞

(e−itA
∗
eitAf, g)

for the couple (A∗, A) (f, g ∈ H), obtaining the correlation function
V (t, s) = (eitAf, eisAf) of the dissipative curves eitAf and the limit of
the correlation function.
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These results for the dissipative operators are presented in the
works of M.S. Liv�sic and his associates (see, for example, [6, 16, 15, 14,
5]).

Naturally there arises the question: are there nondissipative op-
erators A in a Hilbert space H for which there exist the limits

lim
t→+∞

(eitAf, eitAf), lim
t→−∞

(eitAf, eitAf).

It turns out that there exists a larger class of bounded nondissi-
pative operators in a Hilbert space which solve the question, mentioned
above. This class of bounded linear nondissipative operators, presents
couplings of dissipative and antidissipative operators with �nite dimen-
sional imaginary parts and real absolutely continuous spectra. (Analo-
gously it can be considered the case when imaginary part of the operator
belongs to the trace class.) The triangular model of the operators from
this class is introduced by the author in [1] and investigated in [7, 2, 8].
The natural consideration of this class follows from the system-theoretic
signi�cance of the colligation which is connected with the multiplication
theorem of the corresponding correlation function. In [7] the asymptotic
behaviour of the nondissipative curves eitAf as t → ±∞, f ∈ H, has
been obtained, which ensures the existence and the explicite form of the
limits lim

t→±∞
(eitAf, eitAf).

2 The triangular model

In the paper [1] the author has introduced the model which is a
coupling of a dissipative and antidissipative operators with real spectra
and �nite dimensional imaginary parts. In this paper we will complete
the description of a large class of nondissipative operators, present as
a coupling of dissipative and antidissipative operators with real spectra
and �nite dimensional imaginary parts.

In [1] it has been introduced the model

(1)

Af(x) = α(x)f(x)− i
x∫
0

f(ξ)Π(ξ)S∗Π∗(x)dξ+

+i
l∫
x

f(ξ)Π(ξ)SΠ∗(x)dξ + i
x∫
0

f(ξ)Π(ξ)LΠ∗(x)dξ,

where the matrix function Π(x) is a measurable n × m (1 ≤ n ≤ m)
matrix function on [0, l], whose rows are linearly independent at each
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point of a set with a positive measure and satisfying the condition

(2) tr Π∗(x)Π(x) = 1,

the function α(x) is a bounded nondecreasing function in [0, l] which is
continuous at 0 and continuous from the left in (0, l], the matrix L :
Cm −→ Cm with det 6= 0, L∗ = L has the form

(3) L = J1 − J2 + S + S∗,

J1 =

(
Ir 0
0 0

)
, J2 =

(
0 0
0 Im−r

)
, S =

(
0 0

Ŝ 0

)
,

Ik is the identity matrix in Ck (k = r, m− r), Ŝ is (m− r)× r matrix, r
is the number of positive eigen values, m − r is the number of negative
eigen values of L, {f(x) = (f1(x), f2(x), . . . , fn(x)) : fk(x) ∈ L2(0, l)} =
L2(0, l;Cn) is a Hilbert space with a scalar product

(f(x), g(x)) =

l∫
0

f(x)g∗(x)dx, f(x), g(x) ∈ L2(0, l;Cn).

It has to mention that every matrix L with L = L∗, detL 6= 0, can be
presented in the form

(4) L = V (J1 − J2 + S + S∗)V ∗,

where V : Cm −→ Cm is invertible matrix. The representation (4)
follows from the unitary equivelence of L and a diagonal matrix with
eigen values of the matrix L and the generalized inertia law [6].

In the case when the matrix function satis�es the condition

Π∗(x)Π(x)J1 = J1Π∗(x)Π(x)

the operator (1) is a coupling of dissipative and antidissipative opera-
tors with real spectra and �nite dimensional imaginary parts, i.e. the
operator A can be presented in the form

A = P1AP1 + P2AP2 + P1AP2

where P1, P2 are ortogonal projectors in L2(0, l;Cn), P1A is dissipa-
tive operator on the subspace P1L

2(0, l;Cn) (i.e. the imaginary part of
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P1AP1 is a nonegative operator) and P2A is antidissipative operator on
P2L

2(0, l;Cn) (i.e. the imaginary part of P1AP1 is nonpositive opera-
tor). In other words, if Q(x) is a measurable m × n matrix function in
[0, l], satisfying the condition Π(x)Q(x) = I for almost all x ∈ [0, l], the
operators P1, P2 : L2(0, l;Cn) −→ L2(0, l;Cn), de�ned by the equalities

P1f(x) = f(x)Π(x)J1Q(x), P2f(x) = f(x)Π(x)J2Q(x)

are orthoprojectors in L2(0, l;Cn), then the operator A has the repre-
sentation

A = P1AP1 + P2AP2 + P1AP2.

In the last equality P1A is dissipative operator on the subspace
P1L

2(0, l;Cn) (i.e. the imaginary part of P1AP1 is a nonnegative op-
erator) and P2A is antidissipative operator on P2L

2(0, l;Cn) (i.e. the
imaginary part of the operator P1AP1 is nonpositive), P1AP1 and P2AP2

have real spectra, determined by the values of the real function α(x).
It turns out that every nonselfadjoint operator T in a Hilbert space

H which is a coupling of dissipative and antidissipative operators with
real spectra and �nite dimensional imaginary parts can be presented in
the form (1).

Theorem 1. Let the bounded nonselfadjoint operator T in a Hilbert
space H with real spectrum and �nite dimensional imaginary part is
a coupling of dissipative and antidissipative operators with real spectra
determined by a nondecreasing function. Then the operator T is unitery
equivalent to the model (1).

Proof. Let the bounded nonselfadjoint operator T : H −→ H be a cou-
pling of a dissipative operator and an antidissipative one with �nite
dimensional imaginary parts and real spectra, determined by the non-
decreasing function α(x) : [0, l] −→ R. Then T has the representation
from the form

T = P1TP1 + P2TP2 + P1TP2,

where P1, P2 are orthogonal projectors in H and H = H1 ⊕H2, H1 =
P1H, H2 = P2H, H1 is an invariant subspace according to T , P1TP1

is a dissipative operator and P2TP2 is an antidissipative operator. The
operators P1TP1 è P2TP2 can be embedded in operator colligations X1

è X2.
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Now we apply the theorem for unitary equivalence of an operator
with �nite dimensional imaginary part and the triangular model of M.S.
Liv�sic ([6], [16]) onto the principal subspaces in the case of a dissipative
operator and in the case of antidissipative operator with real spectra.
From the relations

dim
P1TP1 − P1T

∗P1

i
H <∞, dim

P2TP2 − P2T
∗P2

i
H <∞,

P1TP1 − P1T
∗P1

i
≥ 0,

P2TP2 − P2T
∗P2

i
≤ 0

it follows that the operator

P1TP1 − P1T
∗P1

i

has s1 nonnegative eigen values in the subspace

P1TP1 − P1T
∗P1

i
H

and the operator
P2TP2 − P2T

∗P2

i

has s2 nonpositive eigen values in the subspace

P2TP2 − P2T
∗P2

i
H.

Then there exist triangular models T̃1 and T̃2 which are embedded in
the operator colligations from the form

X̃1 = (T̃1;L2(0, l;Cn1), Φ̃1,C
r1 ; Ir1),

X̃2 = (T̃2;L2(0, l;Cn2), Φ̃2,C
r2 ;−Ir2)

such that the operators PkTPk è T̃k are unitary equivalent onto the
principal subspaces of the colligations Xk è X̃k (k = 1, 2). It has to
mention that the positive numbers n1, r1, n2, r2 satisfy the inequalities

nk ≤ dimEk ≤ sk ≤ rk, k = 1, 2,
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where E1 è E2 are linear span of channels elements of the colligations
X1 è X2 correspondingly. The operators T̃1 and T̃2 have the form

T̃1g1(x) = α(x)g1(x) + i

x∫
0

g1(ξ)Π̃1(ξ)Ir1Π̃∗1(x)dξ,

T̃2g2(x) = α(x)g2(x)− i
x∫

0

g2(ξ)Π̃2(ξ)Ir2Π̃∗2(x)dξ,

gk(x) ∈ L2(0, l;Cnk) (k = 1, 2). Π̃k(ξ) are nk × rk (k = 1, 2) matrices
functions with linearly independent rows onto the subspaces with posi-
tive measure, the operators Φ̃k : L2(0, l;Cnk) −→ Crk are de�ned by the
equalities

Φ̃kgk(x) =

l∫
0

gk(x)Π̃k(x)Irkdx,

where gk(x) ∈ L2(0, l;Cnk), Irk is identity matrix in Crk (k = 1, 2).
From the unitary equivalence there exist the unitary operators

Uk : L2(0, l;Cnk) −→ PkH, k = 1, 2,

such that

(5) T̃k = U∗kPkTPkUk

onto the principal subspaces of T̃k è PkTPk (k = 1, 2).
Let us consider now the space

L2(0, l;Cn) = L2(0, l;Cn1)⊕ L2(0, l;Cn2)

and the orthoprojectors in L2(0, l;Cn) de�ned by the equalities

P̃1 =

(
In1

0
0 0

)
P̃2 =

(
0 0
0 In2

)
.

Let us choose the numbers m è r such that they satisfy the inequalities

n1 ≤ dimE1 ≤ s1 ≤ r1 ≤ r,
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n2 ≤ dimE2 ≤ s2 ≤ r2 ≤ m− r.

Now we considr the matrix L : Cm −→ Cm with detL 6= 0, L = L∗ and
with r positive and m− r negative eigen values from the form

L = J1 − J2 + S + S∗,

where

J1 =

(
Ir 0
0 0

)
, J2 =

(
0 0
0 Im−r

)
, S =

(
0 0

Ŝ 0

)
.

Straightforward calculations show that if f(x) ∈ L2(0, l;Cn) and

f(x) is presented in the form f(x) = (f1(x), f2(x)), where P̃kf(x) =
fk(x), k = 1, 2, then

(6)

T̃1f1(x) = α(x)f1(x) + i
x∫
0

f1(ξ)Π̃1(ξ)Ir1Π̃∗1(x)dξ =

= α(x)P̃1(f(x)) + i
x∫
0

f(ξ)P̃1Π̂1(ξ)LΠ̂∗1(x)P̃1dξ,

(7)

T̃2f2(x) = α(x)f2(x)− i
x∫
0

f2(ξ)Π̃2(ξ)Ir2Π̃∗2(x)dξ =

= α(x)P̃2(f(x)) + i
x∫
0

f(ξ)P̃2Π̂2(ξ)LΠ̂∗2(x)P̃2dξ,

where n×m matrices Π̂1(ξ) and Π̂2(ξ) have the form

Π̂1(ξ) =

(
Π̃1(ξ) 0 0 0

0 0 0 0

)
J1, Π̂2(ξ) =

(
0 0 0 0

0 0 0 Π̃2(ξ)

)
J2.

The operator T̃1 is dissipative and the operator T̃2 is antidissipative on
the subspaces P̃1L

2(0, l;Cn) and P̃2L
2(0, l;Cn) correspondingly.

Further instead of the colligations X̃1 and X̃2 we consider the
colligations

X̂1 = (P̃1T̃1P̃1; H̃1, Φ̂1,Cm;L),

X̂2 = (P̃2T̃2P̃2; H̃2, Φ̂2,Cm;L),
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where H̃k = P̃kL
2(0, l;Cn),

Φ̂kf(x) =

l∫
0

f(x)Π̂k(x)dx, k = 1, 2.

Then the coupling T = P1TP1 +P2TP2 +P1TP2 of the operators
T1 è T2 is unitary equivalent to the coupling of the operators T̃1 and
T̃2 (T̃1 - a dissipative operator , T̃2 - an antidissipative operator) onto
the principal subspaces. The unitary operator U : L2(0, l;Cn) −→ H
de�ned by the equality

(8) U = P1U1P̃1 + P2U2P̃2

realizes this unitary equivalence.
But straightforward calculations show that

(9)

T̃ = U∗TU = P̃1U
∗
1P1TP1U1P̃1 + P̃2U

∗
2P2TP2U2P̃2+

+P̃1U
∗
1P1TP2U2P̃2 =

= P̃1T̃1P̃1 + P̃2T̃2P̃2 + P̃1T̃ P̃2.

where we have used the relations (5) and (8). On the other hand, using

that T̃ is a coupling, for the operator P̃1T̃ P̃2 we obtain that

(10) P̃1T̃ P̃2 = iΦ̂∗1LΦ̂2P̃2f(x) = i

l∫
0

f(ξ)P̃2Π̂2(ξ)LΠ̂∗1(x)P̃1dξ.

Now the equalities (9), (6), (7) and (10) imply that

(11)

T̃ f(x) = α(x)P̃1(f(x)) + i
x∫
0

f(ξ)P̃1Π̂1(ξ)LΠ̂∗1(x)P̃1dξ+

+α(x)P̃2(f(x)) + i
x∫
0

f(ξ)P̃2Π̂2(ξ)LΠ̂∗2(x)P̃2dξ+

+i
l∫
0

f(ξ)P̃2Π̂2(ξ)LΠ̂∗1(x)P̃1dξ.

Let us denote the next matrix

Π(x) =

(
Π̃1(x) 0 0 0

0 0 0 Π̃2(x)

)
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Hence
P̃1Π(x)J1 = Π̂1(x), P̃2Π(x)J2 = Π̂2(x)

and the representation (11) takes the form

T̃ f(x) = α(x)P̃1(f(x)) + i
x∫
0

f(ξ)Π(ξ)J1LJ1Π∗(x)dξ+

+α(x)P̃2(f(x)) + i
x∫
0

f(ξ)Π(ξ)J2LJ2Π∗(x)dξ+

+i
l∫
0

f(ξ)Π(ξ)J2LJ1Π∗(x)dξ

Hence

(12)

T̃ f(x) = α(x)f(x) + i
x∫
0

f(ξ)Π(ξ)J1Π∗(x)dξ−

−i
x∫
0

f(ξ)Π(ξ)J2Π∗(x)dξ + i
l∫
0

f(ξ)Π(ξ)SΠ∗(x)dξ.

Consequently, from (12) it follows that the operator T = P1TP1 +
P2TP2 + P1TP2 is unitary equivalent to the operator (12) (onto the

principal subspace) and after direct calculations T̃ takes the form

T̃ f(x) = α(x)f(x) + i
l∫
x

f(ξ)Π(ξ)SΠ∗(x)dξ−

−i
x∫
0

f(ξ)Π(ξ)S∗Π∗(x)dξ + i
x∫
0

f(ξ)Π(ξ)LΠ∗(x)dξ.

The condition Π∗(x)Π(x)J1 = J1Π∗(x)Π(x) is obvious.
The pfroof is complete.

The proof of Theorem 1 together with the triangular model (1),
introduced in [1], �nishes the description of a large class of nonselfadjoint
bounded nondissipative operators which are presented as a coupling of
dissipative and antidissipative operators with �nite dimensional imagi-
nary parts and with real spectra, determined by a real nondecreasing
function. This class of operators generates nondissipative continuous
curves whose asymtotics exist and are obtained explicitly in the papers
[7], [10], [8] in terms of multiplicative integrals and a �nite dimensional
analogue of the classical gamma-function. The explicit form of these
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asymptotics plays an important role in the construction of the scat-
tering theory for the couple of operators (A∗, A) ([7], [10]) and results
concerning the connection between the soliton theory and the theory of
commuting nonselfadjoint operators ([4], [3]). A triangular model of reg-
ular couplings of dissipative and antidissipative operators for unbounded
operators A with di�erent domains of A and its adjoint A∗ is introdused
and investigated in [9, 10, 8].
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